Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 8
07.11-11.11.2011

1. Let X be a non-empty set. Define $C_{n}(X)$ to be the free abelian group generated on the set X^{n+1} for $n \geq 0$ and $C_{n}(X)=0$ for $n<0$. Prove that the definition

$$
\partial\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)
$$

defines a boundary operator that makes the collection $C(X)=\left\{C_{n}(X), \partial\right\}$ a chain complex. Prove that $C(X)$ has an augmentation $\varepsilon: C_{0}(X) \rightarrow \mathbb{Z}$ defined by $\varepsilon(x)=1$ on generators.

For a fixed $x \in X$ and every $n \geq 0$ define homomorphism $x: C_{n}(X) \rightarrow$ $C_{n+1}(X)$ by

$$
x\left(x_{0}, \ldots, x_{n}\right)=\left(x, x_{0}, \ldots, x_{n}\right)
$$

Prove that

$$
\left(\partial_{n+1} x+x \partial_{n}\right)(y)=\left\{\begin{array}{l}
y, \text { if } n \neq 0, \\
y-\varepsilon(y) x, \text { if } n=0 .
\end{array}\right.
$$

for all $y \in C(X)$. Deduce that the complex $\widetilde{C}(X)$ is acyclic.
2. Suppose C, D are chain complexes and $f_{n}, g_{n}: C_{n} \rightarrow D_{n}$ homomorphisms defined for every $n \in \mathbb{Z}$. Suppose for every $n \in \mathbb{N}$ there exists a homomorphism $H_{n}: C_{n} \rightarrow D_{n+1}$ with the property

$$
\partial_{n+1} H_{n}+H_{n-1} \partial_{n}=f_{n}-g_{n} \text { for all } n \in \mathbb{Z}
$$

Prove that $f-g=\left\{f_{n}-g_{n} \mid n \in \mathbb{Z}\right\}$ is a chain mapping.
Deduce that if g is a chain mapping, also f is. In other words mapping that is homotopic to a chain mapping is a chain mapping itself.
3. Define a homotopy $H_{n}: C_{n}(X) \rightarrow C_{n+1} X$ by

$$
H_{n}(\sigma)=\sigma_{\sharp}\left(H_{n}\left(\Delta_{n}\right)\right),
$$

where $H_{n}\left(\Delta_{n}\right)$ is the image of id: $\Delta_{n} \rightarrow \Delta_{n}$ under $H_{n}: L C_{n}\left(\Delta_{n}\right) \rightarrow L C_{n+1}\left(\Delta_{n}\right) \subset$ $C_{n}\left(\Delta_{n}\right)$. Prove (using the corresponding property of $H_{n}: L C_{n}\left(\Delta_{n}\right) \rightarrow L C_{n+1}\left(\Delta_{n}\right)$) that H is a chain homotopy between id and barycentric subdivision operator $S: C(X) \rightarrow C(X)$.
4. Let

$$
\begin{gathered}
B_{+}=\left\{x \in S^{n} \mid x_{n+1} \geq 0\right\} \text { and } \\
B_{-}=\left\{x \in S^{n} \mid x_{n+1} \leq 0\right\} .
\end{gathered}
$$

Use homology and excision axioms to show that the inclusions $i:\left(B_{+}, S^{n-1}\right) \rightarrow$ $\left(S^{n}, B_{-}\right)$and $j:\left(B_{-}, S^{n-1}\right) \rightarrow\left(S^{n}, B_{+}\right)$induce isomorphism in relative homology (for all dimensions).
5. a) Suppose $U \subset \mathbb{R}^{n}$ is open and $x \in U$. Prove that

$$
j_{*}: H_{n}(U, U \backslash\{x\}) \cong H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{x\}\right)
$$

for all $n \in \mathbb{N}$. Here j is an obvious inclusion of pairs.
b) Suppose $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ are both open and there is a homeomorphism $f: U \rightarrow V$. Prove that $n=m$.(Hint: remove a point)
6. Suppose $f: \bar{B}^{n} \rightarrow \bar{B}^{n}$ is a homeomorphism. Show that f maps interior B^{n} onto itself and the boundary S^{n-1} also onto itself. (Hint: remove a point).
7. Show that $U=S \backslash\left\{e_{n+1}\right\}$ is homeomorphic to \mathbb{R}^{n} via stereographic projection through the north pole e_{n+1}.
Stereographic projection of the point $y \in U$ is defined to be the unique point in $\mathbb{R}^{n} \subset \mathbb{R}^{n+1}$ which lies on the line spanned by y and e_{n+1}. Construct the explicit formula for the stereographic projection and its inverse.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

