Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 8
Solutions

1. Let X be a non-empty set. Define $C_{n}(X)$ to be the free abelian group generated on the set X^{n+1} for $n \geq 0$ and $C_{n}(X)=0$ for $n<0$. Prove that the definition

$$
\partial\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)
$$

defines a boundary operator that makes the collection $C(X)=\left\{C_{n}(X), \partial\right\}$ a chain complex. Prove that $C(X)$ has an augmentation $\varepsilon: C_{0}(X) \rightarrow \mathbb{Z}$ defined by $\varepsilon(x)=1$ on generators.

For a fixed $x \in X$ and every $n \geq 0$ define homomorphism $x: C_{n}(X) \rightarrow$ $C_{n+1}(X)$ by

$$
x\left(x_{0}, \ldots, x_{n}\right)=\left(x, x_{0}, \ldots, x_{n}\right) .
$$

Prove that

$$
\left(\partial_{n+1} x+x \partial_{n}\right)(y)=\left\{\begin{array}{l}
y, \text { if } n \neq 0 \\
y-\varepsilon(y) x, \text { if } n=0
\end{array}\right.
$$

for all $y \in C(X)$. Deduce that the complex $\widetilde{C}(X)$ is acyclic.
Solution: The fact that $C(X)$ is a chain complex, i.e. $\partial \circ \partial=0$ is proved completely analogically to the proof singular chain complex of a topological space is a complex, so we skip the details.

The fact that is augmentation is also easy - it is clearly surjective (since X is non-empty) and

$$
\varepsilon \partial_{1}\left(x_{0}, x_{1}\right)=\varepsilon\left(x_{1}-x_{0}\right)=1-1=0 .
$$

Let $n>0$ and $y=\left(x_{0}, \ldots, x_{n}\right)$ is a free generator. Then

$$
\begin{gathered}
(\partial x+x \partial)(y)=\partial\left(x, x_{0}, \ldots, x_{n}\right)+\sum_{i=0}^{n}(-1)^{i}\left(x, x_{0}, \ldots, \hat{x_{i}}, \ldots, x_{n}\right)= \\
=\left(x_{0}, \ldots, x_{n}\right)+\sum_{i=1}^{n+1}(-1)^{i}\left(x_{0}, \ldots, \hat{x_{i-1}}, \ldots, x_{n}\right)+\sum_{i=0}^{n}(-1)^{i}\left(x, x_{0}, \ldots, \hat{x_{i}}, \ldots, x_{n}\right) .
\end{gathered}
$$

Change of variables in the last sum shows that all terms cancel out, except for the first one, so

$$
(\partial x+x \partial)(y)=y
$$

Since this is true for all the generators, it is true for all elements.
We are left with the case $n=0$. In that case

$$
(\partial x+x \partial)\left(x_{0}\right)=\partial\left(x, x_{0}\right)+0=x_{0}-x=x_{0}-\varepsilon\left(x_{0}\right) x .
$$

Since this is true for all generators, this must be true for all points.
In particular if we restrict x to \tilde{C}, then $x \tilde{C} \rightarrow \tilde{C}$ is a chain homotopy from identity mapping of \tilde{C} to zero mapping. Since chain homotopic mappings induce same mappings in homology, it follows that id: $H_{n}(\tilde{C}) \rightarrow H_{n}(\tilde{C})$ is a zero mapping for all $n \in \mathbb{N}$, which can only be possible if $H_{n}(\tilde{C})$ is a trivial group for all $n \in \mathbb{N}$, so \tilde{C} is acyclic.
2. Suppose C, D are chain complexes and $f_{n}, g_{n}: C_{n} \rightarrow D_{n}$ homomorphisms defined for every $n \in \mathbb{Z}$. Suppose for every $n \in \mathbb{N}$ there exists a homomorphism $H_{n}: C_{n} \rightarrow D_{n+1}$ with the property

$$
\partial_{n+1} H_{n}+H_{n-1} \partial_{n}=f_{n}-g_{n} \text { for all } n \in \mathbb{Z}
$$

Prove that $f-g=\left\{f_{n}-g_{n} \mid n \in \mathbb{Z}\right\}$ is a chain mapping.
Deduce that if g is a chain mapping, also f is. In other words mapping that is homotopic to a chain mapping is a chain mapping itself.
Solution: Denote $h=f-g$. Then

$$
\partial H+H \partial=h .
$$

Straight calculation shows that

$$
\begin{aligned}
\partial h & =\partial \partial H+\partial H \partial=\partial H \partial, \\
h \partial & =\partial H \partial+H \partial \partial=\partial H \partial,
\end{aligned}
$$

so $\partial h=h \partial$, i.e. h is a chain mapping.
Suppose g is a chain mapping. Then $f=(f-g)+g=h+g$ is a chain mapping, as a sum of two chain mappings.
3. Define a homotopy $H_{n}: C_{n}(X) \rightarrow C_{n+1} X$ by

$$
H_{n}(\sigma)=\sigma_{\sharp}\left(H_{n}\left(\Delta_{n}\right)\right),
$$

where $H_{n}\left(\Delta_{n}\right)$ is the image of id: $\Delta_{n} \rightarrow \Delta_{n}$ under $H_{n}: L C_{n}\left(\Delta_{n}\right) \rightarrow L C_{n+1}\left(\Delta_{n}\right) \subset$ $C_{n}\left(\Delta_{n}\right)$. Prove (using the corresponding property of $H_{n}: L C_{n}\left(\Delta_{n}\right) \rightarrow L C_{n+1}\left(\Delta_{n}\right)$) that H is a chain homotopy between id and barycentric subdivision operator $S: C(X) \rightarrow C(X)$.

Solution: Let us first show that $H: L C(D) \rightarrow L C(D)$ is natural with respect to affine mappings. Put precisely that D and D^{\prime} be two convex subsets of some finite-dimensional vector spaces $\alpha: D \rightarrow D^{\prime}$ is an affine mapping. Then alpha induces homomorphism $\alpha_{\sharp}: L C(D) \rightarrow L C\left(D^{\prime}\right)$, by restriction of $\alpha_{\sharp}: C(D) \rightarrow C\left(D^{\prime}\right)$. This is well defined, since if $\beta: \Delta_{n} \rightarrow D$ is affine, then $\alpha_{\sharp}(\beta)=\alpha \circ \beta: \Delta_{n} \rightarrow D^{\prime}$ is affine.
We claim that $H \circ \alpha_{\sharp}=\alpha_{\sharp} H$. This is shown by induction on n :
$H_{0}=0$, so the claim is trivially true for $n=0$. Suppose claim is proved for $n-1 \geq 0$. Then

$$
\begin{gathered}
\left.\alpha_{\sharp} H_{n}(f)=\alpha_{\sharp}\left(b_{f}\left(f-H_{n-1}(\partial f)\right)\right)=b_{\alpha \circ f} \alpha_{\sharp}\left(f-H_{n-1}(\partial f)\right)\right)= \\
=b_{\alpha \circ f}\left(\alpha_{\sharp}(f)-H_{n-1}\left(\alpha_{\sharp} \partial f\right)\right)=b_{\alpha \circ f}\left(\alpha_{\sharp}(f)-H_{n-1}\left(\partial \alpha_{\sharp}(f)\right)\right)=H_{n}\left(\alpha_{\sharp}(f)\right) .
\end{gathered}
$$

Here we used the facts that α_{\sharp} is a chain mapping i.e. commutes with boundary, the inductive assumption on H_{n-1} and easy observation that

$$
\alpha_{\sharp} b_{f}=b_{\alpha_{\sharp}(f)} \alpha_{\sharp} .
$$

This concludes the proof of commutative relation $H \circ \alpha_{\sharp}=\alpha_{\sharp} H$.
Now let $\sigma: \Delta_{n} \rightarrow X$ be a singular n-simplex in X. We need to show that

$$
\left(\partial H_{n}+H_{n-1} \partial\right)(\sigma)=\sigma-S(\sigma)
$$

By definition we have

$$
H_{n}(\sigma)=\sigma_{\sharp}\left(H_{n}\left(i d: \Delta_{n} \rightarrow \Delta_{n}\right)\right),
$$

hence also

$$
H_{n-1} \partial(\sigma)=\sum_{i=0}^{n}(-1)^{i}\left(\partial^{i} \sigma\right)_{\sharp}\left(H_{n-1}\left(\left(i d: \Delta_{n-1} \rightarrow \Delta_{n-1}\right)\right)\right) .
$$

Now $\partial^{i} \sigma=\sigma: \varepsilon^{i}$, where $\varepsilon^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$ is an affine mapping. Also

$$
\left(\partial^{i} \sigma\right)_{\sharp}=\left(\sigma: \varepsilon^{i}\right)_{\sharp}=\sigma_{\sharp} \circ\left(\varepsilon^{i}\right)_{\sharp .} .
$$

By naturality of H_{n-1} with respect to affine mappings we have that

$$
\left.\left(\varepsilon^{i}\right)_{\sharp} H_{n-1}\left(\operatorname{id}_{n-1}\right)=H_{n-1}\left(\left(\varepsilon^{i}\right)_{\sharp}\right)(\mathrm{id})\right)=H_{n-1}\left(\varepsilon^{i}\right) .
$$

Hence
$\left(\partial H_{n}+H_{n-1} \partial\right)(\sigma)=\sigma_{\sharp}\left(\partial H_{n}\left(\operatorname{id}_{n}\right)\right)+H_{n-1}\left(\sum_{i=0}^{n}(-1)^{i} \varepsilon^{i}\right)=\sigma_{\sharp}\left(\partial H_{n}\left(\operatorname{id}_{n}\right)\right)+H_{n-1}\left(\partial\left(\operatorname{id}_{n}\right)\right)$.
We know from lecture notes that

$$
\left.\partial H_{n}\left(\mathrm{id}_{n}\right)\right)+H_{n-1}\left(\partial\left(\mathrm{id}_{n}\right)=\operatorname{id}_{n}-S\left(\mathrm{id}_{n}\right) .\right.
$$

Plugging it into equation above gives

$$
\left(\partial H_{n}+H_{n-1} \partial\right)(\sigma)=\sigma_{\sharp}\left(\mathrm{id}_{n}-S\left(\mathrm{id}_{n}\right)\right)=\sigma-S(\sigma)
$$

by the definition of S.
4. Let

$$
\begin{gathered}
B_{+}=\left\{x \in S^{n} \mid x_{n+1} \geq 0\right\} \text { and } \\
B_{-}=\left\{x \in S^{n} \mid x_{n+1} \leq 0\right\} .
\end{gathered}
$$

Use homology and excision axioms to show that the inclusions $i:\left(B_{+}, S^{n-1}\right) \rightarrow$ $\left(S^{n}, B_{-}\right)$and $j:\left(B_{-}, S^{n-1}\right) \rightarrow\left(S^{n}, B_{+}\right)$induce isomorphism in relative homology (for all dimensions).

Solution: Let $U=S^{n} \backslash\left\{-e_{n+1}\right\}$. Then U is open subset of S^{n} and the inclusion of pairs $\left(B_{+}, S^{n-1} \hookrightarrow\left(U, B_{-} / \backslash\left\{-e_{n+1}\right\}\right)\right.$ is a homotopy equivalence. Hence it induces isomorphisms in relative homology for all $n \in$ \mathbb{N}. Since $A=\left\{-e_{n+1}\right\}$ is a closed set which is contained in the interior $\left\{x \in S^{n} \mid x_{n+1}<0\right\}$ of B_{-}, excision property implies that the inclusion $\left(U, B_{-} / \backslash\left\{-e_{n+1}\right\}\right) \hookrightarrow\left(S^{n}, B_{-}\right)$induces isomorphisms in homology. Hence the composite $i:\left(B_{+}, S^{n-1}\right) \rightarrow\left(S^{n}, B_{-}\right)$also induces isomorphisms in relative homology (for all dimensions). The claim for j is proved similarly.
5. a) Suppose $U \subset \mathbb{R}^{n}$ is open and $x \in U$. Prove that

$$
j_{*}: H_{m}(U, U \backslash\{x\}) \cong H_{m}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{x\}\right)
$$

for all $m \in \mathbb{N}$. Here j is an obvious inclusion of pairs.
b) Suppose $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ are both open and non-empty and there is a homeomorphism $f: U \rightarrow V$. Prove that $n=m$.(Hint: remove a point)
Solution: a) Let $A=\mathbb{R}^{n} \backslash U, V=\mathbb{R}^{n} \backslash\{x\}$. Then $\bar{A}=A \subset \operatorname{int} V=V$, so excision property implies that inclusion induces isomorphism $H_{m}\left(\mathbb{R}^{n} \backslash A, V \backslash\right.$ $A) \cong H_{m}\left(\mathbb{R}^{n}, V\right)$ for all $m \in \mathbb{N}$. But this is precisely the claim.
b) Let $x \in U$. Homeomorphism f defines homeomorphism of pairs $(U, U \backslash$ $\{x\} \rightarrow\left(V, V \backslash\{f(x)\}\right.$, hence $H_{n}(U, U \backslash\{x\}) \cong H_{n}(V, V \backslash\{f(x)\})$. By a) we obtain that $\mathbb{Z}=H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{x\}\right) \cong H_{n}\left(\mathbb{R}^{m}, \mathbb{R}^{m} \backslash\{x\}\right)$. If $m \neq n$, then $H_{n}\left(\mathbb{R}^{m}, \mathbb{R}^{m} \backslash\{x\}\right)=0$. Hence we must have $m=n$.
6. Suppose $f: \bar{B}^{n} \rightarrow \bar{B}^{n}$ is a homeomorphism. Show that f maps interior B^{n} onto itself and the boundary S^{n-1} also onto itself.
Solution: It is enough to show that if $x \in B^{n}$ then also $f(x) \in B^{n}$. Assume contrary - $f(x) \in S^{n-1}$. Then f induces homeomorhism between $X=\bar{B}^{n} \backslash\{x\}$ and $Y=\bar{B}^{n} \backslash\{f(x)\}$. But X has the same homotopy type as S^{n-1}, in particular n-1-dimensional reduced homology group of X is non-trivial. Y, on the other hand, is convex (linear homotopy to origin suffice), in particular its reduced homology groups are all trivial. Contradictions follows.
7. Show that $U=S \backslash\left\{e_{n+1}\right\}$ is homeomorphic to \mathbb{R}^{n} via stereographic projection through the north pole e_{n+1}.
Stereographic projection of the point $y \in U$ is defined to be the unique point in $\mathbb{R}^{n} \subset \mathbb{R}^{n+1}$ which lies on the line spanned by y and e_{n+1}. Construct the explicit formula for the stereographic projection and its inverse.
Solution: The line L_{y} that goes through y and e_{n+1} has parametric representation

$$
t y+(1-t) e_{n+1}, t \in \mathbb{R}
$$

It follows that a point $z(t)=t y+(1-t) e_{n+1}=\left(t y_{1}, \ldots, t y_{n}, t y_{n+1}+1-t\right)$ lies on this line and belongs to $\mathbb{R}^{n}=\left\{x \in \mathbb{R}^{n+1} \mid x_{n+1}=0\right\}$ if and only if

$$
t\left(y_{n+1}-1\right)+1=t y_{n+1}+1-t=0
$$

i.e. if and only if

$$
t=\frac{1}{1-y_{n+1}} .
$$

Hence for the stereographic projection $f: U \rightarrow \mathbb{R}^{n}$ we obtain formula

$$
f\left(y_{1}, \ldots, y_{n}, y_{n+1}\right)=\frac{1}{1-y_{n+1}}\left(y_{1}, \ldots, y_{n}\right) .
$$

This is well-defined, since $y_{n+1} \neq 1$ for $y \in U$ and is clearly continuous.
To construct formula for the inverse we take a point $x \in \mathbb{R}^{n} \subset \mathbb{R}^{n+1}$, the line L_{x} spanned by x and e_{n+1} and try to find a unique point in U that lies
on L_{x}. Now the representation for L_{x} is

$$
t x+(1-t) e_{n+1}, t \in \mathbb{R}
$$

It follows that a point $z(t)=t x+(1-t) e_{n+1}=\left(t x_{1}, \ldots, t x_{n}, 1-t\right) \in L_{x}$ is in the set U if and only if $t \neq 0$ and

$$
\begin{gathered}
t^{2}\left(|x|^{2}+1\right)-2 t+1=t^{2}\left(x_{1}^{2}+\ldots+t x_{n}^{2}\right)+(1-t)^{2}=|z(t)|^{2}=1 \text { i.e. } \\
t\left(|x|^{2}+1\right)=2
\end{gathered}
$$

Hence for the inverse g of f we obtain formula

$$
g(x)=\frac{2}{|x|^{2}+1} x+\frac{|x|^{2}-1}{|x|^{2}+1} e_{n+1} .
$$

Clearly g defined by this formula is continuous. From construction it follows that g and f are inverses of each others. If one wants, one can also check formally from the formulas that $g=f^{-1}$.

