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1. Let X be a non-empty set. De�ne Cn(X) to be the free abelian group gene-
rated on the set Xn+1 for n ≥ 0 and Cn(X) = 0 for n < 0. Prove that the
de�nition

∂(x0, . . . , xn) =
n∑
i=0

(−1)i(x0, . . . , x̂i, . . . , xn)

de�nes a boundary operator that makes the collection C(X) = {Cn(X), ∂} a
chain complex. Prove that C(X) has an augmentation ε : C0(X)→ Z de�ned
by ε(x) = 1 on generators.

For a �xed x ∈ X and every n ≥ 0 de�ne homomorphism x : Cn(X) →
Cn+1(X) by

x(x0, . . . , xn) = (x, x0, . . . , xn).

Prove that

(∂n+1x+ x∂n)(y) =

{
y, if n 6= 0,

y − ε(y)x, if n = 0.

for all y ∈ C(X). Deduce that the complex C̃(X) is acyclic.

Solution: The fact that C(X) is a chain complex, i.e. ∂ ◦ ∂ = 0 is proved
completely analogically to the proof singular chain complex of a topological
space is a complex, so we skip the details.

The fact that is augmentation is also easy - it is clearly surjective (since
X is non-empty) and

ε∂1(x0, x1) = ε(x1 − x0) = 1− 1 = 0.

Let n > 0 and y = (x0, . . . , xn) is a free generator. Then

(∂x+ x∂)(y) = ∂(x, x0, . . . , xn) +
n∑
i=0

(−1)i(x, x0, . . . , x̂i, . . . , xn) =

= (x0, . . . , xn) +
n+1∑
i=1

(−1)i(x0, . . . , ˆxi−1, . . . , xn) +
n∑
i=0

(−1)i(x, x0, . . . , x̂i, . . . , xn).

Change of variables in the last sum shows that all terms cancel out, except
for the �rst one, so

(∂x+ x∂)(y) = y.

Since this is true for all the generators, it is true for all elements.
We are left with the case n = 0. In that case

(∂x+ x∂)(x0) = ∂(x, x0) + 0 = x0 − x = x0 − ε(x0)x.
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Since this is true for all generators, this must be true for all points.

In particular if we restrict x to C̃, then xC̃ → C̃ is a chain homotopy from
identity mapping of C̃ to zero mapping. Since chain homotopic mappings in-
duce same mappings in homology, it follows that id : Hn(C̃) → Hn(C̃) is a
zero mapping for all n ∈ N, which can only be possible if Hn(C̃) is a trivial
group for all n ∈ N, so C̃ is acyclic.

2. Suppose C,D are chain complexes and fn, gn : Cn → Dn homomorphisms de-
�ned for every n ∈ Z. Suppose for every n ∈ N there exists a homomorphism
Hn : Cn → Dn+1 with the property

∂n+1Hn +Hn−1∂n = fn − gn for all n ∈ Z.

Prove that f − g = {fn − gn|n ∈ Z} is a chain mapping.
Deduce that if g is a chain mapping, also f is. In other words mapping that

is homotopic to a chain mapping is a chain mapping itself.
Solution: Denote h = f − g. Then

∂H +H∂ = h.

Straight calculation shows that

∂h = ∂∂H + ∂H∂ = ∂H∂,

h∂ = ∂H∂ +H∂∂ = ∂H∂,

so ∂h = h∂, i.e. h is a chain mapping.

Suppose g is a chain mapping. Then f = (f − g) + g = h + g is a chain
mapping, as a sum of two chain mappings.

3. De�ne a homotopy Hn : Cn(X)→ Cn+1X by

Hn(σ) = σ](Hn(∆n)),

whereHn(∆n) is the image of id : ∆n → ∆n underHn : LCn(∆n)→ LCn+1(∆n) ⊂
Cn(∆n). Prove (using the corresponding property ofHn : LCn(∆n)→ LCn+1(∆n))
that H is a chain homotopy between id and barycentric subdivision operator
S : C(X)→ C(X).

Solution: Let us �rst show that H : LC(D) → LC(D) is natural with
respect to a�ne mappings. Put precisely thatD andD′ be two convex subsets
of some �nite-dimensional vector spaces α : D → D′ is an a�ne mapping.
Then alpha induces homomorphism α] : LC(D)→ LC(D′), by restriction of
α] : C(D) → C(D′). This is well de�ned, since if β : ∆n → D is a�ne, then
α](β) = α ◦ β : ∆n → D′ is a�ne.
We claim that H ◦ α] = α]H. This is shown by induction on n:
H0 = 0, so the claim is trivially true for n = 0. Suppose claim is proved for
n− 1 ≥ 0. Then

α]Hn(f) = α](bf (f −Hn−1(∂f))) = bα◦fα](f −Hn−1(∂f))) =

= bα◦f (α](f)−Hn−1(α]∂f)) = bα◦f (α](f)−Hn−1(∂α](f))) = Hn(α](f)).
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Here we used the facts that α] is a chain mapping i.e. commutes with boun-
dary, the inductive assumption on Hn−1 and easy observation that

α]bf = bα](f)α].

This concludes the proof of commutative relation H ◦ α] = α]H.

Now let σ : ∆n → X be a singular n-simplex in X. We need to show that

(∂Hn +Hn−1∂)(σ) = σ − S(σ).

By de�nition we have

Hn(σ) = σ](Hn(id : ∆n → ∆n)),

hence also

Hn−1∂(σ) =
n∑
i=0

(−1)i(∂iσ)](Hn−1((id : ∆n−1 → ∆n−1))).

Now ∂iσ = σ : εi, where εi : ∆n−1 → ∆n is an a�ne mapping. Also

(∂iσ)] = (σ : εi)] = σ] ◦ (εi)].

By naturality of Hn−1 with respect to a�ne mappings we have that

(εi)]Hn−1(idn−1) = Hn−1((ε
i)])(id)) = Hn−1(ε

i).

Hence

(∂Hn+Hn−1∂)(σ) = σ](∂Hn(idn))+Hn−1(
n∑
i=0

(−1)iεi) = σ](∂Hn(idn))+Hn−1(∂(idn)).

We know from lecture notes that

∂Hn(idn)) +Hn−1(∂(idn) = idn−S(idn).

Plugging it into equation above gives

(∂Hn +Hn−1∂)(σ) = σ](idn−S(idn)) = σ − S(σ)

by the de�nition of S.

4. Let
B+ = {x ∈ Sn | xn+1 ≥ 0} and
B− = {x ∈ Sn | xn+1 ≤ 0}.

Use homology and excision axioms to show that the inclusions i : (B+, S
n−1)→

(Sn, B−) and j : (B−, S
n−1) → (Sn, B+) induce isomorphism in relative ho-

mology (for all dimensions).

Solution: Let U = Sn \ {−en+1}. Then U is open subset of Sn and the
inclusion of pairs (B+, S

n−1 ↪→ (U,B−/ \ {−en+1}) is a homotopy equi-
valence. Hence it induces isomorphisms in relative homology for all n ∈
N. Since A = {−en+1} is a closed set which is contained in the interior
{x ∈ Sn | xn+1 < 0} of B−, excision property implies that the inclusion
(U,B−/ \ {−en+1}) ↪→ (Sn, B−) induces isomorphisms in homology. Hence
the composite i : (B+, S

n−1)→ (Sn, B−) also induces isomorphisms in relati-
ve homology (for all dimensions). The claim for j is proved similarly.
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5. a) Suppose U ⊂ Rn is open and x ∈ U . Prove that

j∗ : Hm(U,U \ {x}) ∼= Hm(Rn,Rn \ {x})

for all m ∈ N. Here j is an obvious inclusion of pairs.
b) Suppose U ⊂ Rn and V ⊂ Rm are both open and non-empty and there is
a homeomorphism f : U → V . Prove that n = m.(Hint: remove a point)
Solution: a) Let A = Rn \ U , V = Rn \ {x}. Then A = A ⊂ intV = V , so
excision property implies that inclusion induces isomorphism Hm(Rn \A, V \
A) ∼= Hm(Rn, V ) for all m ∈ N. But this is precisely the claim.

b) Let x ∈ U . Homeomorphism f de�nes homeomorphism of pairs (U,U \
{x} → (V, V \ {f(x)}, hence Hn(U,U \ {x}) ∼= Hn(V, V \ {f(x)}).
By a) we obtain that Z = Hn(Rn,Rn \ {x}) ∼= Hn(Rm,Rm \ {x}). If m 6= n,
then Hn(Rm,Rm \ {x}) = 0. Hence we must have m = n.

6. Suppose f : B
n → B

n
is a homeomorphism. Show that f maps interior Bn

onto itself and the boundary Sn−1 also onto itself.
Solution: It is enough to show that if x ∈ Bn then also f(x) ∈ Bn. Assume
contrary - f(x) ∈ Sn−1. Then f induces homeomorhism betweenX = B

n\{x}
and Y = B

n \ {f(x)}. But X has the same homotopy type as Sn−1, in par-
ticular n− 1-dimensional reduced homology group of X is non-trivial. Y , on
the other hand, is convex (linear homotopy to origin su�ce), in particular its
reduced homology groups are all trivial. Contradictions follows.

7. Show that U = S\{en+1} is homeomorphic to Rn via stereographic projection
through the north pole en+1.
Stereographic projection of the point y ∈ U is de�ned to be the unique point
in Rn ⊂ Rn+1 which lies on the line spanned by y and en+1. Construct the
explicit formula for the stereographic projection and its inverse.
Solution: The line Ly that goes through y and en+1 has parametric repre-
sentation

ty + (1− t)en+1, t ∈ R.
It follows that a point z(t) = ty + (1 − t)en+1 = (ty1, . . . , tyn, tyn+1 + 1 − t)
lies on this line and belongs to Rn = {x ∈ Rn+1 | xn+1 = 0} if and only if

t(yn+1 − 1) + 1 = tyn+1 + 1− t = 0

i.e. if and only if

t =
1

1− yn+1

.

Hence for the stereographic projection f : U → Rn we obtain formula

f(y1, . . . , yn, yn+1) =
1

1− yn+1

(y1, . . . , yn).

This is well-de�ned, since yn+1 6= 1 for y ∈ U and is clearly continuous.

To construct formula for the inverse we take a point x ∈ Rn ⊂ Rn+1, the
line Lx spanned by x and en+1 and try to �nd a unique point in U that lies
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on Lx. Now the representation for Lx is

tx+ (1− t)en+1, t ∈ R.
It follows that a point z(t) = tx + (1 − t)en+1 = (tx1, . . . , txn, 1 − t) ∈ Lx is
in the set U if and only if t 6= 0 and

t2(|x|2 + 1)− 2t+ 1 = t2(x21 + . . .+ tx2n) + (1− t)2 = |z(t)|2 = 1 i.e.

t(|x|2 + 1) = 2.

Hence for the inverse g of f we obtain formula

g(x) =
2

|x|2 + 1
x+
|x|2 − 1

|x|2 + 1
en+1.

Clearly g de�ned by this formula is continuous. From construction it follows
that g and f are inverses of each others. If one wants, one can also check
formally from the formulas that g = f−1.


