Matematiikan ja tilastotieteen laitos Introduction to Algebraic Topology Fall 2011 Exercise 8 Solutions

1. Let X be a non-empty set. Define $C_n(X)$ to be the free abelian group generated on the set X^{n+1} for $n \ge 0$ and $C_n(X) = 0$ for n < 0. Prove that the definition

$$\partial(x_0,\ldots,x_n) = \sum_{i=0}^n (-1)^i (x_0,\ldots,\hat{x}_i,\ldots,x_n)$$

defines a boundary operator that makes the collection $C(X) = \{C_n(X), \partial\}$ a chain complex. Prove that C(X) has an augmentation $\varepsilon \colon C_0(X) \to \mathbb{Z}$ defined by $\varepsilon(x) = 1$ on generators.

For a fixed $x \in X$ and every $n \ge 0$ define homomorphism $x: C_n(X) \to C_{n+1}(X)$ by

$$x(x_0,\ldots,x_n)=(x,x_0,\ldots,x_n).$$

Prove that

$$(\partial_{n+1}x + x\partial_n)(y) = \begin{cases} y, \text{ if } n \neq 0, \\ y - \varepsilon(y)x, \text{ if } n = 0. \end{cases}$$

for all $y \in C(X)$. Deduce that the complex $\widetilde{C}(X)$ is acyclic.

Solution: The fact that C(X) is a chain complex, i.e. $\partial \circ \partial = 0$ is proved completely analogically to the proof singular chain complex of a topological space is a complex, so we skip the details.

The fact that is augmentation is also easy - it is clearly surjective (since X is non-empty) and

$$\varepsilon \partial_1(x_0, x_1) = \varepsilon(x_1 - x_0) = 1 - 1 = 0$$

Let n > 0 and $y = (x_0, \ldots, x_n)$ is a free generator. Then

$$(\partial x + x\partial)(y) = \partial(x, x_0, \dots, x_n) + \sum_{i=0}^n (-1)^i (x, x_0, \dots, \hat{x}_i, \dots, x_n) =$$

$$= (x_0, \dots, x_n) + \sum_{i=1}^{n+1} (-1)^i (x_0, \dots, \hat{x_{i-1}}, \dots, x_n) + \sum_{i=0}^n (-1)^i (x, x_0, \dots, \hat{x_i}, \dots, x_n).$$

Change of variables in the last sum shows that all terms cancel out, except for the first one, so

$$(\partial x + x\partial)(y) = y.$$

Since this is true for all the generators, it is true for all elements. We are left with the case n = 0. In that case

$$(\partial x + x\partial)(x_0) = \partial(x, x_0) + 0 = x_0 - x = x_0 - \varepsilon(x_0)x.$$

Since this is true for all generators, this must be true for all points.

In particular if we restrict x to \tilde{C} , then $x\tilde{C} \to \tilde{C}$ is a chain homotopy from identity mapping of \tilde{C} to zero mapping. Since chain homotopic mappings induce same mappings in homology, it follows that id: $H_n(\tilde{C}) \to H_n(\tilde{C})$ is a zero mapping for all $n \in \mathbb{N}$, which can only be possible if $H_n(\tilde{C})$ is a trivial group for all $n \in \mathbb{N}$, so \tilde{C} is acyclic.

2. Suppose C, D are chain complexes and $f_n, g_n \colon C_n \to D_n$ homomorphisms defined for every $n \in \mathbb{Z}$. Suppose for every $n \in \mathbb{N}$ there exists a homomorphism $H_n \colon C_n \to D_{n+1}$ with the property

$$\partial_{n+1}H_n + H_{n-1}\partial_n = f_n - g_n$$
 for all $n \in \mathbb{Z}$.

Prove that $f - g = \{f_n - g_n | n \in \mathbb{Z}\}$ is a chain mapping. Deduce that if g is a chain mapping, also f is. In other words **mapping that** is homotopic to a chain mapping is a chain mapping itself. Solution: Denote h = f - g. Then

$$\partial H + H\partial = h.$$

Straight calculation shows that

$$\begin{split} \partial h &= \partial \partial H + \partial H \partial = \partial H \partial, \\ h \partial &= \partial H \partial + H \partial \partial = \partial H \partial, \end{split}$$

so $\partial h = h\partial$, i.e. h is a chain mapping.

Suppose g is a chain mapping. Then f = (f - g) + g = h + g is a chain mapping, as a sum of two chain mappings.

3. Define a homotopy $H_n: C_n(X) \to C_{n+1}X$ by

$$H_n(\sigma) = \sigma_{\sharp}(H_n(\Delta_n)),$$

where $H_n(\Delta_n)$ is the image of id: $\Delta_n \to \Delta_n$ under $H_n: LC_n(\Delta_n) \to LC_{n+1}(\Delta_n) \subset C_n(\Delta_n)$. Prove (using the corresponding property of $H_n: LC_n(\Delta_n) \to LC_{n+1}(\Delta_n)$) that H is a chain homotopy between id and barycentric subdivision operator $S: C(X) \to C(X)$.

Solution: Let us first show that $H: LC(D) \to LC(D)$ is **natural** with respect to affine mappings. Put precisely that D and D' be two convex subsets of some finite-dimensional vector spaces $\alpha: D \to D'$ is an affine mapping. Then *alpha* induces homomorphism $\alpha_{\sharp}: LC(D) \to LC(D')$, by restriction of $\alpha_{\sharp}: C(D) \to C(D')$. This is well defined, since if $\beta: \Delta_n \to D$ is affine, then $\alpha_{\sharp}(\beta) = \alpha \circ \beta: \Delta_n \to D'$ is affine.

We claim that $H \circ \alpha_{\sharp} = \alpha_{\sharp} H$. This is shown by induction on n: $H_0 = 0$, so the claim is trivially true for n = 0. Suppose claim is proved for $n - 1 \ge 0$. Then

$$\alpha_{\sharp}H_{n}(f) = \alpha_{\sharp}(b_{f}(f - H_{n-1}(\partial f))) = b_{\alpha\circ f}\alpha_{\sharp}(f - H_{n-1}(\partial f))) =$$
$$= b_{\alpha\circ f}(\alpha_{\sharp}(f) - H_{n-1}(\alpha_{\sharp}\partial f)) = b_{\alpha\circ f}(\alpha_{\sharp}(f) - H_{n-1}(\partial\alpha_{\sharp}(f))) = H_{n}(\alpha_{\sharp}(f)).$$

Here we used the facts that α_{\sharp} is a chain mapping i.e. commutes with boundary, the inductive assumption on H_{n-1} and easy observation that

$$\alpha_{\sharp}b_f = b_{\alpha_{\sharp}(f)}\alpha_{\sharp}$$

This concludes the proof of commutative relation $H \circ \alpha_{\sharp} = \alpha_{\sharp} H$.

Now let $\sigma: \Delta_n \to X$ be a singular *n*-simplex in X. We need to show that

$$(\partial H_n + H_{n-1}\partial)(\sigma) = \sigma - S(\sigma).$$

By definition we have

$$H_n(\sigma) = \sigma_{\sharp}(H_n(id \colon \Delta_n \to \Delta_n)),$$

hence also

$$H_{n-1}\partial(\sigma) = \sum_{i=0}^{n} (-1)^{i} (\partial^{i}\sigma)_{\sharp} (H_{n-1}((id \colon \Delta_{n-1} \to \Delta_{n-1}))).$$

Now $\partial^i \sigma = \sigma \colon \varepsilon^i$, where $\varepsilon^i \colon \Delta^{n-1} \to \Delta^n$ is an affine mapping. Also $(\partial^i \sigma)_{\sharp} = (\sigma \colon \varepsilon^i)_{\sharp} = \sigma_{\sharp} \circ (\varepsilon^i)_{\sharp}.$

By naturality of H_{n-1} with respect to affine mappings we have that

$$(\varepsilon^{i})_{\sharp}H_{n-1}(\mathrm{id}_{n-1}) = H_{n-1}((\varepsilon^{i})_{\sharp})(\mathrm{id})) = H_{n-1}(\varepsilon^{i}).$$

Hence

$$(\partial H_n + H_{n-1}\partial)(\sigma) = \sigma_{\sharp}(\partial H_n(\mathrm{id}_n)) + H_{n-1}(\sum_{i=0}^n (-1)^i \varepsilon^i) = \sigma_{\sharp}(\partial H_n(\mathrm{id}_n)) + H_{n-1}(\partial(\mathrm{id}_n)).$$

We know from lecture notes that

$$\partial H_n(\mathrm{id}_n)) + H_{n-1}(\partial(\mathrm{id}_n) = \mathrm{id}_n - S(\mathrm{id}_n).$$

Plugging it into equation above gives

$$(\partial H_n + H_{n-1}\partial)(\sigma) = \sigma_{\sharp}(\mathrm{id}_n - S(\mathrm{id}_n)) = \sigma - S(\sigma)$$

by the definition of S.

4. Let

$$B_{+} = \{ x \in S^{n} \mid x_{n+1} \ge 0 \} \text{ and} \\ B_{-} = \{ x \in S^{n} \mid x_{n+1} \le 0 \}.$$

Use homology and excision axioms to show that the inclusions $i: (B_+, S^{n-1}) \rightarrow (S^n, B_-)$ and $j: (B_-, S^{n-1}) \rightarrow (S^n, B_+)$ induce isomorphism in relative homology (for all dimensions).

Solution: Let $U = S^n \setminus \{-e_{n+1}\}$. Then U is open subset of S^n and the inclusion of pairs $(B_+, S^{n-1} \hookrightarrow (U, B_- / \setminus \{-e_{n+1}\})$ is a homotopy equivalence. Hence it induces isomorphisms in relative homology for all $n \in \mathbb{N}$. Since $A = \{-e_{n+1}\}$ is a closed set which is contained in the interior $\{x \in S^n \mid x_{n+1} < 0\}$ of B_- , excision property implies that the inclusion $(U, B_- / \setminus \{-e_{n+1}\}) \hookrightarrow (S^n, B_-)$ induces isomorphisms in homology. Hence the composite $i: (B_+, S^{n-1}) \to (S^n, B_-)$ also induces isomorphisms in relative homology (for all dimensions). The claim for j is proved similarly.

5. a) Suppose $U \subset \mathbb{R}^n$ is open and $x \in U$. Prove that

 $j_* \colon H_m(U, U \setminus \{x\}) \cong H_m(\mathbb{R}^n, \mathbb{R}^n \setminus \{x\})$

for all $m \in \mathbb{N}$. Here j is an obvious inclusion of pairs.

b) Suppose $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ are both open and non-empty and there is a homeomorphism $f: U \to V$. Prove that n = m.(Hint: remove a point) **Solution:** a) Let $A = \mathbb{R}^n \setminus U$, $V = \mathbb{R}^n \setminus \{x\}$. Then $\overline{A} = A \subset \operatorname{int} V = V$, so excision property implies that inclusion induces isomorphism $H_m(\mathbb{R}^n \setminus A, V \setminus A) \cong H_m(\mathbb{R}^n, V)$ for all $m \in \mathbb{N}$. But this is precisely the claim.

b) Let $x \in U$. Homeomorphism f defines homeomorphism of pairs $(U, U \setminus \{x\}) \to (V, V \setminus \{f(x)\})$, hence $H_n(U, U \setminus \{x\}) \cong H_n(V, V \setminus \{f(x)\})$. By a) we obtain that $\mathbb{Z} = H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{x\}) \cong H_n(\mathbb{R}^m, \mathbb{R}^m \setminus \{x\})$. If $m \neq n$, then $H_n(\mathbb{R}^m, \mathbb{R}^m \setminus \{x\}) = 0$. Hence we must have m = n.

- 6. Suppose f: Bⁿ → Bⁿ is a homeomorphism. Show that f maps interior Bⁿ onto itself and the boundary Sⁿ⁻¹ also onto itself.
 Solution: It is enough to show that if x ∈ Bⁿ then also f(x) ∈ Bⁿ. Assume contrary f(x) ∈ Sⁿ⁻¹. Then f induces homeomorphism between X = Bⁿ \{x} and Y = Bⁿ \ {f(x)}. But X has the same homotopy type as Sⁿ⁻¹, in particular n 1-dimensional reduced homology group of X is non-trivial. Y, on the other hand, is convex (linear homotopy to origin suffice), in particular its reduced homology groups are all trivial. Contradictions follows.
- 7. Show that $U = S \setminus \{e_{n+1}\}$ is homeomorphic to \mathbb{R}^n via stereographic projection through the north pole e_{n+1} .

Stereographic projection of the point $y \in U$ is defined to be the unique point in $\mathbb{R}^n \subset \mathbb{R}^{n+1}$ which lies on the line spanned by y and e_{n+1} . Construct the explicit formula for the stereographic projection and its inverse.

Solution: The line L_y that goes through y and e_{n+1} has parametric representation

$$ty + (1-t)e_{n+1}, t \in \mathbb{R}.$$

It follows that a point $z(t) = ty + (1-t)e_{n+1} = (ty_1, \dots, ty_n, ty_{n+1} + 1 - t)$ lies on this line and belongs to $\mathbb{R}^n = \{x \in \mathbb{R}^{n+1} \mid x_{n+1} = 0\}$ if and only if

$$t(y_{n+1} - 1) + 1 = ty_{n+1} + 1 - t = 0$$

i.e. if and only if

$$t = \frac{1}{1 - y_{n+1}}$$

Hence for the stereographic projection $f: U \to \mathbb{R}^n$ we obtain formula

$$f(y_1,\ldots,y_n,y_{n+1}) = \frac{1}{1-y_{n+1}}(y_1,\ldots,y_n).$$

This is well-defined, since $y_{n+1} \neq 1$ for $y \in U$ and is clearly continuous.

To construct formula for the inverse we take a point $x \in \mathbb{R}^n \subset \mathbb{R}^{n+1}$, the line L_x spanned by x and e_{n+1} and try to find a unique point in U that lies

on L_x . Now the representation for L_x is

$$tx + (1-t)e_{n+1}, t \in \mathbb{R}.$$

It follows that a point $z(t) = tx + (1-t)e_{n+1} = (tx_1, \ldots, tx_n, 1-t) \in L_x$ is in the set U if and only if $t \neq 0$ and

$$t^{2}(|x|^{2}+1) - 2t + 1 = t^{2}(x_{1}^{2} + \ldots + tx_{n}^{2}) + (1-t)^{2} = |z(t)|^{2} = 1$$
 i.e.
 $t(|x|^{2}+1) = 2.$

Hence for the inverse g of f we obtain formula

$$g(x) = \frac{2}{|x|^2 + 1}x + \frac{|x|^2 - 1}{|x|^2 + 1}e_{n+1}.$$

Clearly g defined by this formula is continuous. From construction it follows that g and f are inverses of each others. If one wants, one can also check formally from the formulas that $g = f^{-1}$.