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Solutions

1. a) Suppose X is a non-empty space and x ∈ X. For every path-component
Xa of X which does not contain x choose a point ya ∈ Xa. Prove that the set

{[ya − x] | a ∈ A}

is a basis for H̃0(X), which is thus a free abelian group.
Here A is a set of all path-components of X that do not contain x.

b) Suppose X = S0 = {1,−1} is a 2-point discrete space. Show that
H̃0(X) ∼= Z with 1− (−1) a generator and H̃n(X) = 0 for n 6= 0.

Solution: a) By Corollary 3.1.3 and Proposition 3.1.4 H0(X) is a free abelian
group with basis

{[ya] | a ∈ A} ∪ {[x]}.
Now H̃0(X) = Ker ε∗. First of all

ε∗[ya − x] = ε(ya)− ε(x) = 0,

so [ya − x] ∈ H̃0(X). Suppose

a =
n∑
i=1

ki[ya] + k[x] ∈ Ker ε∗,

then ε∗(a) =
∑n

i=1 ki + k = 0, so k = −
∑
ki, hence

a =
n∑
i=1

ki([ya]− [x]) =
n∑
i=1

ki([ya − x]).

Thus the set {[ya − x] | a ∈ A} generates the group H̃0(X). It remains to
show that it is free. Suppose

0 =
n∑
i=1

ki([ya − x]) =
n∑
i=1

ki[ya] + k[x],

where k = −
∑n

i=1 ki. Since the set {[ya] | a ∈ A} ∪ {[x]} is free, it follows
that k1 = . . . = kn = k = 0.

b) The claim about H̃0(X) follows from a). Also for n 6= 0

H̃n(X) = Hn(X) = Hn({−1} ⊕Hn(1) = 0⊕ 0 = 0.

2. Prove that Mobius band has the same homotopy type as S1.

Solution: We think of Mobius band as a quotient space X = I2/ ∼, where
I = [0, 1] and (0, t) ∼ (1, 1− t) for all t ∈ I. Consider the subspace

Y = {[(x, 1/2)]}
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of X. Then Y is homeomorphic to S1, so it enough to show that the inlusion
i : Y ↪→ X is a homotopy equivalence. Let us de�ne q : X → Y by

q([x, y]) = [x, 1/2] and

H : X × I → X by

H([x, t], t′) = [x, (1− t′)t+ t′/2].

Then i ◦ q(a) = H(a, 1), a = H(a, 0) for all a ∈ X and

H([0, t], t′) = [0, (1− t′)t+ t′/2] = [1, 1− (1− t′)t− t′/2] =

= [1, 1− t′ − t+ t′t+ t′/2] = [1, (1− t′)(1− t) + t′/2] =

= H([1, 1− t], t′).
Hence H is well de�ned. Consider the commutative diagram

I2 × I
π×id
��

H̃

##
X × I H // X.

Here π : I2 → X is a canonical projection and H̃ is de�ned by the formula

H̃((x, t), t′) = (x, (1− t′)t+ t′/2).

Now I2 × I is compact and X is Hausdor�, so π × id is a quotient mapping
(Topology II). Since H̃ is continuous, it follows that H is continuous.
Thus H is a homotopy from identity mapping to i ◦ q. Clearly q ◦ i = id. We
have shown that i is a homotopy equivalence.

3. a) Suppose Y is a contractible space and X is any space. Suppose f : X → Y
and g : Y → X are continuous mappings. Prove that both f and g are homo-
topic to constant mappings. Also prove that Y is path-connected.

b) Suppose Y is a non-empty space. Prove that the following conditions
are equivalent:
1) Y is contractible.
2) The set [X, Y ] is a singleton for any space X.
3) Y is path-connected and the set [Y,X] is a singleton for every non-empty
path-connected space X.
4) Y has a homotopy type of a singleton space.

Solution: a) Since Y is contractible there exists y ∈ Y such that id ≈ cy,
where cy is a constant mapping, cy(x) = y for all x ∈ Y . Then

f = id ◦f ≈ cy ◦ f = cy,

g = g ◦ id ≈ g ◦ cy = cg(y).

Let H : Y × Y → Y be a homotopy id ≈ cy. Then for any x ∈ X the path
αx : I → Y de�ned by

αx(t) = H(x, t)

is a path from x to y in Y . In particular Y is path-connected.

b) Suppose Y is contractible. As above we see that there exists y ∈ Y such
that every f : X → Y is homotopic to a constant mapping cy : x 7→ y. Hence



3

[X, Y ] is a singleton. Also Y is path-connected. Suppose X is path-connected.
As above we see that every mapping g : Y → X is homotopic to a constant
mapping cx for some x ∈ X. Let x, x′ ∈ X. Then there exists a path α from
x to x′ and the mapping H : Y × I → Y de�ned by

H(y, t) = α(t)

is a homotopy cx ≈ cx′ . Hence all constant mappings Y → X are homotopic,
so all mappings Y → X are homotopic.
Consider singleton space {y} and let i : {y} → Y be inclusion, q : Y → {y}
the unique mapping. Then q ◦ i = id and i ◦ q = cy is homotopic to identity.
Hence i is a homotopy equivalence.
We have shown that 1)⇒2), 1)⇒3), 1)⇒4).

Suppose 2) or 3). Then in particular [Y, Y ] is a singleton, so id : Y → Y is
homotopic to any constant mapping in Y . Hence Y is contractible.

Suppose 4). There is y such that the only possible mapping q : Y → {y} is
a homotopy equivalence. Let i : {y} → Y be homotopy inverse of q. Suppose
X is a space and f : X → Y is a mapping. Then

f = id ◦f ≈ i ◦ q ◦ f = ci(y),

hence [X, Y ] is a singleton. In other words 4) ⇒ 2).
4. a) Suppose f : (X,A)→ (Y,B) is a mapping of pairs. Suppose that f : X → Y

as well as f |A : A→ B are homotopy equivalences. Prove that

f∗ : Hn(X,A)→ Hn(Y,B)

is an isomorphism.

b) Let

X =
⋃
n∈N+

{1/n} × I ∪ {0} × I ∪ I × {0}

(so-called "topological comb space ") and x0 = (0, 1). Prove that a constant
mapping f : (X, x0) → (x0, x0) is such that its restrictions to X → x0 and
x0 → x0 are homotopy equivalences, but f is not a homotopy equivalence (as
a mapping of pairs).

Solution: a) By Corollary 3.2.5 f∗ : Hn(X)→ Hn(Y ) as well as (f |A)∗ : Hn(A)→
Hn(B) are isomorphisms for every n ∈ Z. Consider the commutative diagram

Hn(A)
i∗ //

f |∗∼=
��

Hn(X)
j∗ //

f∗∼=
��

Hn(X,A)
∂ //

f∗
��

Hn−1(A) //

f |∗∼=
��

Hn−1(X)

f∗∼=
��

Hn(B)
i∗ // Hn(Y )

j∗ // Hn(Y,B)
∂ // Hn−1(B) // Hn−1(Y )

with exact rows. Five Lemma (Lemma 2.2.9) implies the claim.

b) mapping {x0} → {x0} is a homeomorphism, in particular a homo-
topy equivalence. Let i : {x} → X be an inclusion. Then f ◦ i = id. Let
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H1, H2, H3 : X × I → X be homotopies de�ned by

H1((x, t), t
′) = (x, (1− t′)t),

H2((x, t), t
′) = ((1− t′)x, 0).

H3((x, t), t
′) = (0, 1− t′).

Then H1 is a homotopy id ≈ pr1, where pr1(x, y) = (x, 0), H2 is a homo-
topy pr1 ≈ c, where c : X → X is a constant mapping (x, y) 7→ (0, 0) and H3

is a homotopy c ≈ i ◦ f . Hence i ◦ f ≈ id.

Suppose f : (X, x0)→ (x0, x0) is a homotopy equivalence of pairs, then its
inverse must be the only mapping i : (x0, x0) → (X, x0), i(x0) = x0 ∈ X.
Now i ◦ f is homotopic to identity as a mapping of pairs i.e. there exists a
homotopy H : X → I → X such that

H(x, 0) = x,

H(x, 1) = x0

for all x ∈ X and H(x0, t) = x0 for all t ∈ I.
Let

U = {(x, y) ∈ X | y > 0} ⊂ X.

Then U is open and H({x0} × I) ⊂ U , hence

{x0} × I ⊂ H−1(U),

which is then open in X × I, by continuity.
Since both {x0} and I are compact, there exist open neighbourhood V of x0
in X such that

{x0} × I ⊂ V × I ⊂ H−1(U)

(see Topology II). In other words H(V × I) ⊂ U . Since V is a neighbourhood
of x0 = (0, 1), there exists n ∈ N such that xn = (1/n, 1) ∈ V . Hence mapping
α : I → X de�ned by

α(t) = H(xn, t)

is a path from xn to x0 in U . But this is impossible since xn and x0 clearly
belong to di�erent components of U .

5. Suppose K is a �nite ∆-complex. For every geometric n-simplex σ of K
choose a point xσ ∈ intσ and let U = |Kn| \ {xσ|σ ∈ Kn/ ∼}. Prove that U
is open in Kn and the inclusion |Kn−1| ↪→ U is a homotopy equivalence.
Deduce that the inclusion i : (|Kn|, |Kn−1|) → (|Kn|, U) induces isomorp-
hisms in relative homology in all dimensions.

Solution: Suppose σ is a geometrical simplex in |Kn|. Then U ∩ σ is either
σ ( if dimσ < n) or σ/setminus{xσ} (if dimσ = n), so is open in σ in every
case. Since |Kn| has weak topology coherent with simplices, it follows that U
is open in |Kn|.
Let

Z = tσ∈Knσ,

Ũ = Z \ {xσ|σ ∈ Kn/ ∼}
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and let π : Z → |Kn| be a canonical projection (which is quotient mapping
with respect to the weak topology on |Kn|). Then Ũ = π−1U is open in Z.
We de�ne H̃ : Ũ × I → |Kn| so that H̃(x, t) = x for x ∈ |Kn−1| and

H(x, t) = (1− t)x+ tx/|x|

for x ∈ σ, x 6= xσ, where σ is an n-dimensional simplex of K. Here we identify
σ with B

n
via a homeomorphism which maps xσ to 0 (Proposition 1.1.10).

Then there is a (unique) mapping H : U × I → |Kn| such that the diagram

Ũ × I

π|×id
��

H̃

##
U × I H // |Kn|.

commutes. To show H is continuous we need to prove that π| × id is a quo-
tient mapping. Since K is �nite Z × I is compact, so continuous surjective
π × id : Z × I → |Kn| × I is a closed mapping, hence quotient mapping,
provided we know that |Kn| is Hausdor�. Let us go back to that later. Also
notice that for us "K is �nite"means that K has �nitely many geometrical

simplices, but the set of simplices K can be in�nite, in which case Z is not
compact. However in this case we can always reduce the amount of simpices
in K to �nite, without altering the amount of geometrical simplices.
Next we use the following well-known topological result (proof of which is left
to the reader, in case he/she is not familiar with it):
Suppose f : X → Y is quotient mapping and U ⊂ Y is open (or closed). Then
the restriction f | : f−1U → U is also a quotient mapping.

Hence in the end we obtain that π| × id is a quotient mapping, which suf-
�ces to assure H is continuous. Clearly H is a homotopy from identity to the
mapping q = H(·, 1) : U → |Kn−1|, or, to be precise to the mapping i ◦ q,
where i is the inclusion |Kn−1| ↪→ U . Also q is constructed so that q× i = id.
Hence q is a homotopy equivalence of i.

Consider inclusion of pairs i : (|Kn|, |Kn−1|)→ (|Kn|, U). Then the restric-
tion i| : |Kn−1| → U is the inclusion, which we just proved to be homotopy
equivalence. Also the restriction i : |Kn| → |Kn| is a homotopy equivalence,
since it is just identity mapping.
Now the last claim follows from exercise 4a).

The only problem left is that we did not verify that |Kn| is Hausdor�. This
actually follows from more general results on CW-complexes we will prove
later in the course.
This can also be proved directly by induction on n. For n = 0 this is clear,
since |K0| is discrete. Suppose x, y ∈ |Kn|, x 6= y and the claim is true for
n − 1. Suppose y is in the interior of an n-simplex σ, which we identify
with the open disk Bn, so that y corresponds to 0. Then no matter where
x is, there is small enough r > 0 so that open disk V = B(0, r) of radius
r does not contain x, while W = |Kn| \ B(x, r) does contain x, in which
case V and W are disjoint neighbourhoods of y and x. By symmetry this
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also handles the case x is in the interior of some n simplex. We are left with
the case x, y ∈ |Kn−1|. We take U = |Kn| \ {xσ|σ ∈ Kn/ ∼} as above and
Ũ = p−1(U). By the general topological results mentioned above we know that
the restriction p| : Ũ → U is a quotient mapping. We de�ne q̃ : Ũ → |Kn−1|
as above, so that it is identity on simplices of dimension smaller than n and
then a natural restriction to the boundary on σ/ \ {xσ} on every n-simplex
σ. As above we easily seen that this mapping quotiens out in the diagram

Ũ

π|
��

q̃

$$
U × I q // |Kn−1|.

giving us a continuous mapping q : U → |Kn−1|, which is, in fact, a retrac-

tion of U onto |Kn−1|.
Now since U is open in |Kn|, it is enough to prove that x and y have disjoint
neighbourhoods V,W in U . But by inductive assumption they have disjoint
neighbourhoods V ′,W ′ in |Kn−1| and we just assert

V = q−1(V ′),W = q−1(W ′).

Remark: The only technical problem we faced was to show that π×id : X×
I → Y × I is a quotient mapping, when π : X → Y is, and that is why we
had to restrict ourselves to the �nite case. This is not necessary - it is always
true that π × id : X × I → Y × I is a quotient mapping, when π : X → Y
is, but the proof is not trivial so we skip it in this course. You can �nd it in
Maunder, Algebraic Topology (Theorem 6.2.4).

6. Suppose C ′, C,D,D′ are chain complexes, f, g, h : C → D, k,m : D → D′,
l : C ′ → C are chain mappings.
a) Suppose H is chain homotopy from f to g, H ′ chain homotopy from g
to h. Prove that H + H ′ is a chain homotopy from f to h. Deduce that the
relation "f and g are chain homotopic"is an equivalence relation in the set
of all chain mappings C → D.
b) Prove that k ◦ H is a chain homotopy from k ◦ f to k ◦ g and H ◦ l is a
chain homotopy from f ◦ l to g ◦ l.
c) Suppose H ′′ is a chain homotopy from k to m. Then H ′′ ◦ f +m ◦H and
k ◦H +H ′′ ◦ g are chain homotopies from k ◦ f to m ◦ g.
Solution: a) We have equations

∂H +H∂ = g − f,

∂H ′ +H ′∂ = h− g.
Adding them together gives

∂(H +H ′) + (H +H ′)∂ = (g − f) + (h− g) = h− f,

so H +H ′ is a chain homotopy from f to h. This implies that the relation "f
and g are chain homotopic"is transitive. It is also re�exive, since 0 is a chain
homotopy from f to f , for every chain mapping f , and it is symmetric since
if H is a chain homotopy from f to g, −H is a chain homotopy from g to f .
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b) Again we begin with equation

∂H +H∂ = g − f.
Applying k on the left gives us

k∂H + kH∂ = kg − kf.
But k is a chain mapping, so k∂ = ∂k, thus we obtain

∂(kH) + (kH)∂ = kg − kf,
which implies that kH is a chain homotopy from kf to kg.
The second claim is proved in the similar way.

c) This is combination of a)and b) - by b) H ′′ ◦ f is a homotopy from
k ◦ f to m ◦ f , while m ◦H is a homotopy from m ◦ f to m ◦ g. Hence by a)
H ′′ ◦ f +m ◦H is a chain homotopy from k ◦ f to m ◦ g. The other claim is
proved similarly.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.


