Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 7
Solutions

1. a) Suppose X is a non-empty space and $x \in X$. For every path-component X_{a} of X which does not contain x choose a point $y_{a} \in X_{a}$. Prove that the set

$$
\left\{\left[y_{a}-x\right] \mid a \in \mathcal{A}\right\}
$$

is a basis for $\tilde{H}_{0}(X)$, which is thus a free abelian group.
Here \mathcal{A} is a set of all path-components of X that do not contain x.
b) Suppose $X=S^{0}=\{1,-1\}$ is a 2-point discrete space. Show that $\tilde{H}_{0}(X) \cong \mathbb{Z}$ with $1-(-1)$ a generator and $\tilde{H}_{n}(X)=0$ for $n \neq 0$.

Solution: a) By Corollary 3.1.3 and Proposition 3.1.4 $H_{0}(X)$ is a free abelian group with basis

$$
\left\{\left[y_{a}\right] \mid a \in \mathcal{A}\right\} \cup\{[x]\} .
$$

Now $\tilde{H}_{0}(X)=\operatorname{Ker} \varepsilon_{*}$. First of all

$$
\varepsilon_{*}\left[y_{a}-x\right]=\varepsilon\left(y_{a}\right)-\varepsilon(x)=0,
$$

so $\left[y_{a}-x\right] \in \tilde{H}_{0}(X)$. Suppose

$$
a=\sum_{i=1}^{n} k_{i}\left[y_{a}\right]+k[x] \in \operatorname{Ker} \varepsilon_{*},
$$

then $\varepsilon_{*}(a)=\sum_{i=1}^{n} k_{i}+k=0$, so $k=-\sum k_{i}$, hence

$$
a=\sum_{i=1}^{n} k_{i}\left(\left[y_{a}\right]-[x]\right)=\sum_{i=1}^{n} k_{i}\left(\left[y_{a}-x\right]\right) .
$$

Thus the set $\left\{\left[y_{a}-x\right] \mid a \in \mathcal{A}\right\}$ generates the group $\tilde{H}_{0}(X)$. It remains to show that it is free. Suppose

$$
0=\sum_{i=1}^{n} k_{i}\left(\left[y_{a}-x\right]\right)=\sum_{i=1}^{n} k_{i}\left[y_{a}\right]+k[x],
$$

where $k=-\sum_{i=1}^{n} k_{i}$. Since the set $\left\{\left[y_{a}\right] \mid a \in \mathcal{A}\right\} \cup\{[x]\}$ is free, it follows that $k_{1}=\ldots=k_{n}=k=0$.
b) The claim about $\tilde{H}_{0}(X)$ follows from a). Also for $n \neq 0$

$$
\tilde{H}_{n}(X)=H_{n}(X)=H_{n}\left(\{-1\} \oplus H_{n}(1)=0 \oplus 0=0 .\right.
$$

2. Prove that Mobius band has the same homotopy type as S^{1}.

Solution: We think of Mobius band as a quotient space $X=I^{2} / \sim$, where $I=[0,1]$ and $(0, t) \sim(1,1-t)$ for all $t \in I$. Consider the subspace

$$
Y=\{[(x, 1 / 2)]\}
$$

of X. Then Y is homeomorphic to S^{1}, so it enough to show that the inlusion $i: Y \hookrightarrow X$ is a homotopy equivalence. Let us define $q: X \rightarrow Y$ by

$$
q([x, y])=[x, 1 / 2] \text { and }
$$

$H: X \times I \rightarrow X$ by

$$
H\left([x, t], t^{\prime}\right)=\left[x,\left(1-t^{\prime}\right) t+t^{\prime} / 2\right] .
$$

Then $i \circ q(a)=H(a, 1), a=H(a, 0)$ for all $a \in X$ and

$$
\begin{gathered}
H\left([0, t], t^{\prime}\right)=\left[0,\left(1-t^{\prime}\right) t+t^{\prime} / 2\right]=\left[1,1-\left(1-t^{\prime}\right) t-t^{\prime} / 2\right]= \\
=\left[1,1-t^{\prime}-t+t^{\prime} t+t^{\prime} / 2\right]=\left[1,\left(1-t^{\prime}\right)(1-t)+t^{\prime} / 2\right]= \\
=H\left([1,1-t], t^{\prime}\right) .
\end{gathered}
$$

Hence H is well defined. Consider the commutative diagram

Here $\pi: I^{2} \rightarrow X$ is a canonical projection and \tilde{H} is defined by the formula

$$
\tilde{H}\left((x, t), t^{\prime}\right)=\left(x,\left(1-t^{\prime}\right) t+t^{\prime} / 2\right)
$$

Now $I^{2} \times I$ is compact and X is Hausdorff, so $\pi \times$ id is a quotient mapping (Topology II). Since \tilde{H} is continuous, it follows that H is continuous.
Thus H is a homotopy from identity mapping to $i \circ q$. Clearly $q \circ i=\mathrm{id}$. We have shown that i is a homotopy equivalence.
3. a) Suppose Y is a contractible space and X is any space. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are continuous mappings. Prove that both f and g are homotopic to constant mappings. Also prove that Y is path-connected.
b) Suppose Y is a non-empty space. Prove that the following conditions are equivalent:

1) Y is contractible.
2) The set $[X, Y]$ is a singleton for any space X.
3) Y is path-connected and the set $[Y, X]$ is a singleton for every non-empty path-connected space X.
4) Y has a homotopy type of a singleton space.

Solution: a) Since Y is contractible there exists $y \in Y$ such that id $\approx c_{y}$, where c_{y} is a constant mapping, $c_{y}(x)=y$ for all $x \in Y$. Then

$$
\begin{gathered}
f=\mathrm{id} \circ f \approx c_{y} \circ f=c_{y}, \\
g=g \circ \mathrm{id} \approx g \circ c_{y}=c_{g(y)} .
\end{gathered}
$$

Let $H: Y \times Y \rightarrow Y$ be a homotopy id $\approx c_{y}$. Then for any $x \in X$ the path $\alpha_{x}: I \rightarrow Y$ defined by

$$
\alpha_{x}(t)=H(x, t)
$$

is a path from x to y in Y. In particular Y is path-connected.
b) Suppose Y is contractible. As above we see that there exists $y \in Y$ such that every $f: X \rightarrow Y$ is homotopic to a constant mapping $c_{y}: x \mapsto y$. Hence
$[X, Y]$ is a singleton. Also Y is path-connected. Suppose X is path-connected. As above we see that every mapping $g: Y \rightarrow X$ is homotopic to a constant mapping c_{x} for some $x \in X$. Let $x, x^{\prime} \in X$. Then there exists a path α from x to x^{\prime} and the mapping $H: Y \times I \rightarrow Y$ defined by

$$
H(y, t)=\alpha(t)
$$

is a homotopy $c_{x} \approx c_{x^{\prime}}$. Hence all constant mappings $Y \rightarrow X$ are homotopic, so all mappings $Y \rightarrow X$ are homotopic.
Consider singleton space $\{y\}$ and let $i:\{y\} \rightarrow Y$ be inclusion, $q: Y \rightarrow\{y\}$ the unique mapping. Then $q \circ i=\mathrm{id}$ and $i \circ q=c_{y}$ is homotopic to identity. Hence i is a homotopy equivalence.
We have shown that 1$) \Rightarrow 2), 1) \Rightarrow 3), 1) \Rightarrow 4$).
Suppose 2) or 3). Then in particular $[Y, Y]$ is a singleton, so id: $Y \rightarrow Y$ is homotopic to any constant mapping in Y. Hence Y is contractible.

Suppose 4). There is y such that the only possible mapping $q: Y \rightarrow\{y\}$ is a homotopy equivalence. Let $i:\{y\} \rightarrow Y$ be homotopy inverse of q. Suppose X is a space and $f: X \rightarrow Y$ is a mapping. Then

$$
f=\operatorname{id} \circ f \approx i \circ q \circ f=c_{i(y)},
$$

hence $[X, Y]$ is a singleton. In other words 4$) \Rightarrow 2$).
4. a) Suppose $f:(X, A) \rightarrow(Y, B)$ is a mapping of pairs. Suppose that $f: X \rightarrow Y$ as well as $f \mid A: A \rightarrow B$ are homotopy equivalences. Prove that

$$
f_{*}: H_{n}(X, A) \rightarrow H_{n}(Y, B)
$$

is an isomorphism.
b) Let

$$
X=\bigcup_{n \in \mathbb{N}_{+}}\{1 / n\} \times I \cup\{0\} \times I \cup I \times\{0\}
$$

(so-called "topological comb space ") and $x_{0}=(0,1)$. Prove that a constant mapping $f:\left(X, x_{0}\right) \rightarrow\left(x_{0}, x_{0}\right)$ is such that its restrictions to $X \rightarrow x_{0}$ and $x_{0} \rightarrow x_{0}$ are homotopy equivalences, but f is not a homotopy equivalence (as a mapping of pairs).

Solution: a) By Corollary 3.2.5 $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$ as well as $(f \mid A)_{*}: H_{n}(A) \rightarrow$ $H_{n}(B)$ are isomorphisms for every $n \in \mathbb{Z}$. Consider the commutative diagram

with exact rows. Five Lemma (Lemma 2.2.9) implies the claim.
b) mapping $\left\{x_{0}\right\} \rightarrow\left\{x_{0}\right\}$ is a homeomorphism, in particular a homotopy equivalence. Let $i:\{x\} \rightarrow X$ be an inclusion. Then $f \circ i=\mathrm{id}$. Let
$H_{1}, H_{2}, H_{3}: X \times I \rightarrow X$ be homotopies defined by

$$
\begin{gathered}
H_{1}\left((x, t), t^{\prime}\right)=\left(x,\left(1-t^{\prime}\right) t\right), \\
H_{2}\left((x, t), t^{\prime}\right)=\left(\left(1-t^{\prime}\right) x, 0\right) \\
H_{3}\left((x, t), t^{\prime}\right)=\left(0,1-t^{\prime}\right) .
\end{gathered}
$$

Then H_{1} is a homotopy id $\approx p r_{1}$, where $p r_{1}(x, y)=(x, 0), H_{2}$ is a homotopy $p r_{1} \approx c$, where $c: X \rightarrow X$ is a constant mapping $(x, y) \mapsto(0,0)$ and H_{3} is a homotopy $c \approx i \circ f$. Hence $i \circ f \approx \mathrm{id}$.

Suppose $f:\left(X, x_{0}\right) \rightarrow\left(x_{0}, x_{0}\right)$ is a homotopy equivalence of pairs, then its inverse must be the only mapping $i:\left(x_{0}, x_{0}\right) \rightarrow\left(X, x_{0}\right), i\left(x_{0}\right)=x_{0} \in X$. Now $i \circ f$ is homotopic to identity as a mapping of pairs i.e. there exists a homotopy $H: X \rightarrow I \rightarrow X$ such that

$$
\begin{aligned}
& H(x, 0)=x \\
& H(x, 1)=x_{0}
\end{aligned}
$$

for all $x \in X$ and $H\left(x_{0}, t\right)=x_{0}$ for all $t \in I$.
Let

$$
U=\{(x, y) \in X \mid y>0\} \subset X
$$

Then U is open and $H\left(\left\{x_{0}\right\} \times I\right) \subset U$, hence

$$
\left\{x_{0}\right\} \times I \subset H^{-1}(U)
$$

which is then open in $X \times I$, by continuity.
Since both $\left\{x_{0}\right\}$ and I are compact, there exist open neighbourhood V of x_{0} in X such that

$$
\left\{x_{0}\right\} \times I \subset V \times I \subset H^{-1}(U)
$$

(see Topology II). In other words $H(V \times I) \subset U$. Since V is a neighbourhood of $x_{0}=(0,1)$, there exists $n \in \mathbb{N}$ such that $x_{n}=(1 / n, 1) \in V$. Hence mapping $\alpha: I \rightarrow X$ defined by

$$
\alpha(t)=H\left(x_{n}, t\right)
$$

is a path from x_{n} to x_{0} in U. But this is impossible since x_{n} and x_{0} clearly belong to different components of U.
5. Suppose K is a finite Δ-complex. For every geometric n-simplex σ of K choose a point $x_{\sigma} \in \operatorname{int} \sigma$ and let $U=\left|K^{n}\right| \backslash\left\{x_{\sigma} \mid \sigma \in K_{n} / \sim\right\}$. Prove that U is open in K^{n} and the inclusion $\left|K^{n-1}\right| \hookrightarrow U$ is a homotopy equivalence.
Deduce that the inclusion $i:\left(\left|K^{n}\right|,\left|K^{n-1}\right|\right) \rightarrow\left(\left|K^{n}\right|, U\right)$ induces isomorphisms in relative homology in all dimensions.

Solution: Suppose σ is a geometrical simplex in $\left|K^{n}\right|$. Then $U \cap \sigma$ is either $\sigma($ if $\operatorname{dim} \sigma<n)$ or $\sigma / \operatorname{setminus}\left\{x_{\sigma}\right\}$ (if $\operatorname{dim} \sigma=n$), so is open in σ in every case. Since $\left|K^{n}\right|$ has weak topology coherent with simplices, it follows that U is open in $\left|K^{n}\right|$.
Let

$$
\begin{gathered}
Z=\sqcup_{\sigma \in K^{n}} \sigma \\
\tilde{U}=Z \backslash\left\{x_{\sigma} \mid \sigma \in K_{n} / \sim\right\}
\end{gathered}
$$

and let $\pi: Z \rightarrow\left|K^{n}\right|$ be a canonical projection (which is quotient mapping with respect to the weak topology on $\left.\left|K^{n}\right|\right)$. Then $\tilde{U}=\pi^{-1} U$ is open in Z. We define $\tilde{H}: \tilde{U} \times I \rightarrow\left|K^{n}\right|$ so that $\tilde{H}(x, t)=x$ for $x \in\left|K^{n-1}\right|$ and

$$
H(x, t)=(1-t) x+t x /|x|
$$

for $x \in \sigma, x \neq x_{\sigma}$, where σ is an n-dimensional simplex of K. Here we identify σ with \bar{B}^{n} via a homeomorphism which maps x_{σ} to 0 (Proposition 1.1.10). Then there is a (unique) mapping $H: U \times I \rightarrow\left|K^{n}\right|$ such that the diagram

commutes. To show H is continuous we need to prove that $\pi \mid \times$ id is a quotient mapping. Since K is finite $Z \times I$ is compact, so continuous surjective $\pi \times \mathrm{id}: Z \times I \rightarrow\left|K^{n}\right| \times I$ is a closed mapping, hence quotient mapping, provided we know that $\left|K^{n}\right|$ is Hausdorff. Let us go back to that later. Also notice that for us " K is finite"means that K has finitely many geometrical simplices, but the set of simplices K can be infinite, in which case Z is not compact. However in this case we can always reduce the amount of simpices in K to finite, without altering the amount of geometrical simplices.
Next we use the following well-known topological result (proof of which is left to the reader, in case he/she is not familiar with it):
Suppose $f: X \rightarrow Y$ is quotient mapping and $U \subset Y$ is open (or closed). Then the restriction $f \mid: f^{-1} U \rightarrow U$ is also a quotient mapping.

Hence in the end we obtain that $\pi \mid \times$ id is a quotient mapping, which suffices to assure H is continuous. Clearly H is a homotopy from identity to the mapping $q=H(\cdot, 1): U \rightarrow\left|K^{n-1}\right|$, or, to be precise to the mapping $i \circ q$, where i is the inclusion $\left|K^{n-1}\right| \hookrightarrow U$. Also q is constructed so that $q \times i=\mathrm{id}$. Hence q is a homotopy equivalence of i.

Consider inclusion of pairs $i:\left(\left|K^{n}\right|,\left|K^{n-1}\right|\right) \rightarrow\left(\left|K^{n}\right|, U\right)$. Then the restriction $i\left|:\left|K^{n-1}\right| \rightarrow U\right.$ is the inclusion, which we just proved to be homotopy equivalence. Also the restriction $i:\left|K^{n}\right| \rightarrow\left|K^{n}\right|$ is a homotopy equivalence, since it is just identity mapping.
Now the last claim follows from exercise 4a).
The only problem left is that we did not verify that $\left|K^{n}\right|$ is Hausdorff. This actually follows from more general results on CW-complexes we will prove later in the course.
This can also be proved directly by induction on n. For $n=0$ this is clear, since $\left|K^{0}\right|$ is discrete. Suppose $x, y \in\left|K^{n}\right|, x \neq y$ and the claim is true for $n-1$. Suppose y is in the interior of an n-simplex σ, which we identify with the open disk B^{n}, so that y corresponds to 0 . Then no matter where x is, there is small enough $r>0$ so that open disk $V=B(0, r)$ of radius r does not contain x, while $W=\left|K^{n}\right| \backslash \bar{B}(x, r)$ does contain x, in which case V and W are disjoint neighbourhoods of y and x. By symmetry this
also handles the case x is in the interior of some n simplex. We are left with the case $x, y \in\left|K^{n-1}\right|$. We take $U=\left|K^{n}\right| \backslash\left\{x_{\sigma} \mid \sigma \in K_{n} / \sim\right\}$ as above and $\tilde{U}=p^{-1}(U)$. By the general topological results mentioned above we know that the restriction $p \mid: \tilde{U} \rightarrow U$ is a quotient mapping. We define $\tilde{q}: \tilde{U} \rightarrow\left|K^{n-1}\right|$ as above, so that it is identity on simplices of dimension smaller than n and then a natural restriction to the boundary on $\sigma / \backslash\left\{x_{\sigma}\right\}$ on every n-simplex σ. As above we easily seen that this mapping quotiens out in the diagram

giving us a continuous mapping $q: U \rightarrow\left|K^{n-1}\right|$, which is, in fact, a retraction of U onto $\left|K^{n-1}\right|$.
Now since U is open in $\left|K^{n}\right|$, it is enough to prove that x and y have disjoint neighbourhoods V, W in U. But by inductive assumption they have disjoint neighbourhoods V^{\prime}, W^{\prime} in $\left|K^{n-1}\right|$ and we just assert

$$
V=q^{-1}\left(V^{\prime}\right), W=q^{-1}\left(W^{\prime}\right)
$$

Remark: The only technical problem we faced was to show that $\pi \times \mathrm{id}: X \times$ $I \rightarrow Y \times I$ is a quotient mapping, when $\pi: X \rightarrow Y$ is, and that is why we had to restrict ourselves to the finite case. This is not necessary - it is always true that $\pi \times \mathrm{id}: X \times I \rightarrow Y \times I$ is a quotient mapping, when $\pi: X \rightarrow Y$ is, but the proof is not trivial so we skip it in this course. You can find it in Maunder, Algebraic Topology (Theorem 6.2.4).
6. Suppose $C^{\prime}, C, D, D^{\prime}$ are chain complexes, $f, g, h: C \rightarrow D, k, m: D \rightarrow D^{\prime}$, $l: C^{\prime} \rightarrow C$ are chain mappings.
a) Suppose H is chain homotopy from f to g, H^{\prime} chain homotopy from g to h. Prove that $H+H^{\prime}$ is a chain homotopy from f to h. Deduce that the relation " f and g are chain homotopic"is an equivalence relation in the set of all chain mappings $C \rightarrow D$.
b) Prove that $k \circ H$ is a chain homotopy from $k \circ f$ to $k \circ g$ and $H \circ l$ is a chain homotopy from $f \circ l$ to $g \circ l$.
c) Suppose $H^{\prime \prime}$ is a chain homotopy from k to m. Then $H^{\prime \prime} \circ f+m \circ H$ and $k \circ H+H^{\prime \prime} \circ g$ are chain homotopies from $k \circ f$ to $m \circ g$.
Solution: a) We have equations

$$
\begin{gathered}
\partial H+H \partial=g-f, \\
\partial H^{\prime}+H^{\prime} \partial=h-g .
\end{gathered}
$$

Adding them together gives

$$
\partial\left(H+H^{\prime}\right)+\left(H+H^{\prime}\right) \partial=(g-f)+(h-g)=h-f
$$

so $H+H^{\prime}$ is a chain homotopy from f to h. This implies that the relation " f and g are chain homotopic"is transitive. It is also reflexive, since 0 is a chain homotopy from f to f, for every chain mapping f, and it is symmetric since if H is a chain homotopy from f to $g,-H$ is a chain homotopy from g to f.
b) Again we begin with equation

$$
\partial H+H \partial=g-f .
$$

Applying k on the left gives us

$$
k \partial H+k H \partial=k g-k f .
$$

But k is a chain mapping, so $k \partial=\partial k$, thus we obtain

$$
\partial(k H)+(k H) \partial=k g-k f,
$$

which implies that $k H$ is a chain homotopy from $k f$ to $k g$. The second claim is proved in the similar way.
c) This is combination of a)and b) - by b) $H^{\prime \prime} \circ f$ is a homotopy from $k \circ f$ to $m \circ f$, while $m \circ H$ is a homotopy from $m \circ f$ to $m \circ g$. Hence by a) $H^{\prime \prime} \circ f+m \circ H$ is a chain homotopy from $k \circ f$ to $m \circ g$. The other claim is proved similarly.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

