
Matematiikan ja tilastotieteen laitosIntrodution to Algebrai TopologyFall 2011Exerise 6Solutions1. Suppose
0 // C ′

f
// C

g
// C // 0is a short exat sequene of hain omplexes and hain mappings.Consider the sequene

. . . // Hn+1(C)
∂

// Hn(C
′)

f∗
// Hn(C)

g∗
// Hn(C)

∂
// Hn−1(C

′) // . . . ,where ∂ is a boundary homology operator, de�ned as usual.a) Prove that
Ker ∂ ⊂ Im g∗.b) Prove the exatness of the sequene at Hn(C

′).Solution: a) Suppose [x] ∈ Hn(C) is an element of Ker ∂. Hene x ∈ Zn(C)and ∂[x] = 0 ∈ Hn−1(C
′). By the de�nition of boundary operator ∂[x] = [z],where fn−1(z) = ∂n(y) for some y ∈ Cn with gn(y) = x. Now [z] = 0, hene

z ∈ Bn(C
′) i.e. there exists u ∈ C ′

n suh that ∂′
n(u) = z. By ommutativitywe have

∂n(fn(u)) = fn−1(∂
′

n(u)) = fn−1(z) = ∂n(y).It follows that ∂n(y − fn(u)) = 0, hene y − fn(u) ∈ Ker ∂n = Zn(C) and thehomology lass [y − fn(u)] ∈ Hn(C) exists. Moreover
g∗([y − fn(u)]) = [gn(y)− gn(fn(u))] = [gn(y)] = [x],sine g ◦ f = 0 by exatness. In partiular [x] ∈ Im g∗.b) Suppose [x] ∈ Hn(C), where x ∈ Zn(C). Then there exists y ∈ Cnand z ∈ C ′
n−1 suh that gn(y) = x and fn−1(z) = ∂n(y). Then by de�nition

∂([x]) = [z], hene
f∗(∂([x])) = f∗(z) = [fn−1(z)] = [∂n(y)] = 0 ∈ Hn(C).In other words f∗ ◦ ∂ = 0.On the other hand suppose [z] ∈ Hn(C

′), z ∈ Zn(C
′) is suh that f∗([z]) =

0 ∈ Hn−1(C). This means that fn−1(z) is a boundary element in Cn−1, i.e.there exists y ∈ Cn suh that ∂n(y) = fn−1(z). Let x = gn(y) ∈ C. Then byommutativity and exatness
∂(x) = gn−1(∂(y)) = gn−1(fn−1(z)) = 0.Hene x ∈ Zn(C) and by onstrution ∂[x] = [z]. We have shown that

Ker f∗ ⊂ Im ∂.



22. Suppose (X,A,B) is a topologial triple.a)Prove that
0 // C(A,B)

i♯
// C(X,B)

j♯
// C(X,A) // 0,where i : (A,B) → (X,B) and j : (X,B) → (X,A) are obvious inlusions, isa short exat sequene. Dedue the existene of the long exat sequene

. . . // Hn+1(X,A)
∂′

// Hn(A,B)
i∗

// Hn(X,B)
j∗

// Hn(X,A)
∂

// Hn−1(A,B) // . . . .b) Show that for the boundary operators of the long exat homology sequenesof the pair (X,A) and of the triple (X,A,B) there is a ommutative diagram
Hn(A)

i∗

��

Hn+1(X,A)

∂
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∂′
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O

Hn(A,B),where i : A → (A,B) is an inlusion. (Hint: use naturality of the long exathomology sequene.)Solution: a)
Im i♯ = {x+ C(B) ∈ C(X)/C(B) | x ∈ C(A)} = C(A)/C(B) ⊂ C(X)/C(B),on the other hand
Ker j♯ = {x+C(B) ∈ C(X)/C(B) | x+C(A) = 0 ∈ C(X)/C(A)} = C(A)/C(B) ⊂ C(X)/C(B).Hene sequene is exat at C(X,B).

j♯ is learly a surjetion, sine j♯(x+C(B)) = x+C(A) for every x ∈ C(X).Also i♯ is an injetion, sine if i♯(x+ C(B)) = x+ C(B) = 0 ∈ C(X)/C(B),this implies that x ∈ C(B), so x+ C(B) = 0 ∈ C(A)/C(B).We have shown that the sequene
0 // C(A,B)

i♯
// C(X,B)

j♯
// C(X,A) // 0,is exat.Theorem 2.2.5 implies now the existene of the long exat sequene

. . . // Hn+1(X,A)
∂′

// Hn(A,B)
i∗

// Hn(X,B)
j∗

// Hn(X,A)
∂

// Hn−1(A,B) // . . . .



3b)Consider the diagram
0 // C(A)

i♯
//

k♯
��

C(X)
j♯

//

l♯
��

C(X,A) //

id

��

0

0 // C(A,B)
i♯

// C(X,B)
j♯

// C(X,A) // 0,where k : A → (A,B) and l : X → (X,B) are inlusions. It is easy to verifythat the diagram is ommutative. By the naturality of the boundary operator(Lemma 2.2.4) the diagram
Hn+1(X,A)

∂
//

id∗

��

Hn(A)

k∗
��

Hn+1(X,A)
∂

// Hn(A,B)is ommutative. Sine id∗ = id the laim follows.3. Prove the seond part of the Five-Lemma: Suppose the diagram of groupsand homomorphisms
G1

α1
//

f1
��

G2

α2
//

f2
��

G3

α3
//

f3
��

G4

α4
//

f4
��

G5

f5
��

H1

β1
// H2

β2
// H3

β3
// H4

β4
// H5is ommutative, rows are exat, f5 is injetive and f2, f4 are surjetive.Then f3 is surjetive.Solution: Suppose y ∈ H3. We need to �nd x ∈ G3 suh that f3(x) = y.Now f4 is surjetive, so there exists u ∈ G4 suh that

f4(u) = β3(y).By ommutativity and exatness we have
f5(α4(u)) = β4(f4(u)) = β4(β3(y)) = 0.Sine f5 is injetive this implies that α4(u) = 0. By exatness there exists

v ∈ G3 suh that α3(v) = u. Now
β3(f3(v)) = f4(α3(v)) = f4(u) = β3(y), so

β3(y − f3(v)) = 0.By exatness there exists z ∈ H2 suh that β2(z) = y − f3(v). Sine f2 is asurjetion there is w ∈ G2 suh that f2(w) = z. We obtain that
f3(α2(w) + v) = f3(α2(w)) + f3(v) = β2(f2(w)) + f3(v) = y.4. Suppose the hain omplex C is a diret sum of omplexes (Ca)a∈A. Provethat the inlusion mappings ia : Ca → C indue a hain isomorphism

((ia)∗)a∈A : ⊕a∈A Hn(Ca) → Hn(C)for every n ∈ N.



4 Solution: Reall the following fat from the theory of groups. Suppose
(Ga)a∈A is a olletion of abelian groups and Ha is a subgroup of Ga forevery a ∈ A. Let πa : Ga → Ga/Ha be a anonial projetion. Then

p = ⊕aßApa : ⊕a∈A Ga → ⊕a∈A(Ga/Ha)is learly surjetive and its kernel equals ⊕a∈AHa. Hene p indues naturalisomorphism
p = ⊕a∈AGa/⊕a∈A Ha

∼= ⊕a∈A(Ga/Ha).The inverse of p is de�ned as following. Let ia : Ga → ⊕a∈AGa be a a-nonial embedding and π : ⊕a∈A Ga → ⊕a∈AGa/ ⊕a∈A Ha be a anonialprojetion. Then the omposition π ◦ ia indues a mapping i′a : Ga/Ha →
⊕a∈AGa/⊕a∈A Ha and ⊕i′a is an inverse mapping of overlinep.Now suppose C = ⊕(Ca)a∈A. Then by de�nition of the boundary operator

Zn(C) = ⊕Zn(Cα), and
Bn(C) = ⊕Bn(Cα).Then

Hn(C) = Zn(C)/Bn(C) ∼= ⊕a∈A(Zn(Cα)/Bn(Cα)) = ⊕a∈AHn(Cα).Moreover onsideration above show that the isomorphism is exatly (ia)∗)a∈A.5. a) Suppose
0 // C ′

f
// C

g
// C // 0is a short exat sequene of hain omplexes and hain mappings. Prove thatif any two of omplexes C ′, C, C are ayli, also the third one is ayli.b) Suppose

. . . 0

��

0

��

0

��

. . .

. . . // An−1
//

��

An
//

��

An+1
//

��

. . .

. . . // Bn−1
//

��

Bn
//

��

Bn+1
//

��

. . .

. . . // Cn−1
//

��

Cn
//

��

Cn+1
//

��

. . .

. . . 0 0 0 . . .is a ommutative diagram of abelian groups and homomorphisms. Assumethat all olumns are exat and the middle row (of B's) is exat. Prove thatthe upper row (A's) is exat if and only if lower row (C's) is exat.Solution: a) Consider the long exat sequene in homology
. . . // Hn+1(C)

∂
// Hn(C

′)
f∗

// Hn(C)
g∗

// Hn(C)
∂

// Hn−1(C
′) // . . .



5Assumptions imply that this sequene has the following property: everypart of three onseutive groups is suh that at least two groups in it aretrivial.It is enough to show that any exat sequene with suh property ontainsonly trivial groups. Indeed in this group every group A whih is not knownto be trivial is part of the exat sequene
0

f
// A

g
// 0.Now A = Ker g = Im f = 0 and we are done.b) The middle row is exat, so in partiular an be thought of as a hainomplex B ( whih is ayli). It Follows that upper row A an be thenonsidered a subomplex of B and the lower row C is then a quotient omplex

B/A. Sine B is ayli, the laim follows from a).6. Suppose f : X → Y is ontinuous and X, Y are both path-onneted andnon-empty spaes. Show that f∗ : H0(X) → H0(Y ) is an isomorphism.Solution: Consider the ommutative diagram
H0(X)

ε∗

''PP
PP

PP
PP

PP
PP

PP

f∗

��

Z

H0(Y )

ε∗
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.Sine both ε∗ are now isomorphisms (Proposition 3.1.4), f∗ also is.7. Suppose C is a hain omplex with an augmentation ε. Prove that thesequene
. . . // Cn+1

∂n+1
// Cn

∂n
// Cn−1

// . . . // C0

ε
// Z // 0 // . . .is a hain omplex C ′, and Hn(C̃) = Hn(C

′) for all n ∈ Z. This gives anotherinterpretation of redued homology groups.Solution: Sine ε ◦ ∂1 = 0, C ′ is a hain omplex. For n > 0 or n < 0 it hasthe same groups of yles and boundaries, so also the same homology as C.In other words
Hn(C

′) = Hn(C) = Hn(C̃).If n = 0 the group of boundaries is the same as for C, but the group of ylesis Ker ε = C̃0, so
H0(C

′) = H0(C̃).Bonus points for the exerises: 25% - 1 point, 40% - 2 points, 50% - 3 points,60% - 4 points, 75% - 5 points.


