Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 5
Solutions

1. Consider S^{1} as a polyhedron of a Δ-complex, generated by a single 1 -simplex, whose vertices are identified. Calculate the simplicial homology of this complex. Verify that the result is the same as calculated in the lectures using the triangulation of S^{1} as a boundary of a 2 -simplex.

Solution: Let us first make the following observation, which will also be useful while solving other exercises.
Suppose K is a Δ-complex, that has only one (geometrical) vertex x. Then $\partial_{1}: C_{1}(K) \rightarrow C_{0}(K)$ is zero mapping, hence

$$
\begin{gathered}
H_{1}(K)=C_{1}(K) / \operatorname{Im} \partial_{2} \text { and } \\
H_{0}(K) \cong C_{0}(K)=\mathbb{Z}[x] \cong \mathbb{Z}
\end{gathered}
$$

Indeed in this case for every 1 -simplex $[v, w] \in K$, we must have $v=w$, so

$$
\partial_{1}([v, w])=w-v=0 .
$$

Now our Δ-complex has only one edge a and only one vertex x. Hence $H_{n}(K)=0$ for $n \neq 0,1$. Moreover by the observation above

$$
\begin{aligned}
H_{1}(K)=C_{1}(K) / \operatorname{Im} \partial_{2} & =\mathbb{Z}[a] /\{0\} \cong \mathbb{Z} \text { and } \\
H_{0}(K) & \cong \mathbb{Z}
\end{aligned}
$$

Here we used the fact that there are no 2 -simplices, so ∂_{2} is a zero mapping as well.
2. Calculate the homology groups of the Klein bottle, using the familiar Δ complex structure given in the picture below.

Solution: In this complex there is only one vertex again, so

$$
H_{0}(K) \cong \mathbb{Z}
$$

and $H_{1}(K)=C_{1}(K) / \operatorname{Im} \partial_{2}$. Now $C_{1}(K)=\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[c]$, while

$$
\begin{aligned}
& \partial_{2}(U)=a+b-c=\alpha, \\
& \partial_{2}(V)=a-b+c=\beta .
\end{aligned}
$$

Now

$$
\partial_{2}(n U+m V)=n \alpha+m \beta=(n+m) a+(n-m) b+(m-n) c=0
$$

if and only if $n+m=n-m=0$, i.e. if and only if $n=m=0$. This shows that

1) ∂_{2} is an injection, hence $H_{2}(K)=0$, as a quotient of a trivial group $\operatorname{Ker} \partial_{2}$. 2) $\{\alpha, \beta\}$ is an independent set, which is then a basis of the free abelian group $\operatorname{Im} \partial_{2}$.

According to the exercise $4.6\{\alpha+\beta, \alpha\}=\{2 a, a+b-c\}$ is also a basis for $\operatorname{Im} \partial_{2}$. On the other hand the application of this exercise to the set $\{a, b\}$ first implies that $\mathbb{Z}[a] \oplus \mathbb{Z}[b]=\mathbb{Z}[a] \oplus \mathbb{Z}[a+b]$, hence

$$
C_{1}(K)=\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[c]=\mathbb{Z}[a] \oplus \mathbb{Z}[a+b] \oplus \mathbb{Z}[c] .
$$

Another application of the exercise 4.6 shows that $\mathbb{Z}[a+b] \oplus \mathbb{Z}[c]=\mathbb{Z}[a+b-$ $c] \oplus \mathbb{Z}[c]$, hence

$$
C_{1}(K)=\mathbb{Z}[a] \oplus \mathbb{Z}[a+b-c] \oplus \mathbb{Z}[c] .
$$

Now it follows that

$$
H_{1}(K)=(\mathbb{Z}[a] \oplus \mathbb{Z}[a+b-c] \oplus \mathbb{Z}[c]) /(\mathbb{Z}[2 a] \oplus \mathbb{Z}[a+b-c]) \cong \mathbb{Z}[a] / 2 \mathbb{Z}[a] \oplus \mathbb{Z}[c]=\mathbb{Z}_{2} \oplus \mathbb{Z}
$$

3. Calculate the homology groups of the torus, using the Δ-complex structure

Solution: Once again there is only one vertex, so

$$
\begin{gathered}
H_{0}(K) \cong \mathbb{Z} \text { and } \\
H_{1}(K)=C_{1}(K) / \operatorname{Im} \partial_{2} .
\end{gathered}
$$

We have

$$
\partial_{2}(U)=a+b-c=\partial_{2}(V) .
$$

Hence

$$
\partial_{2}(n U+m V)=(n+m)(a+b-c)=0
$$

if and only if $n=-m$. It follows that

$$
H_{2}(K)=\operatorname{Ker} \partial_{2}=\mathbb{Z}[U-V] \cong \mathbb{Z}
$$

and $\operatorname{Im} \partial_{2}$ is a free group $\mathbb{Z}[a+b-c]$.
As in the similar exercise we easily see that

$$
C_{1}(K)=\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[a+b-c] .
$$

Hence

$$
H_{1}(K)=(\mathbb{Z}[a] \oplus \mathbb{Z}[b] \oplus \mathbb{Z}[a+b-c]) /(\mathbb{Z}[a+b-c]) \cong \mathbb{Z}[a] \oplus \mathbb{Z}[b] \cong \mathbb{Z} \oplus \mathbb{Z}
$$

4. Calculate the homology groups of the Mobius band using the Δ-complex structure as in exercise 3.3, having one triangle with two sides indentified.

Solution: Again there is only one vertex, so

$$
H_{0}(K)=\mathbb{Z}
$$

and $H_{1}(K)=C_{1}(K) / \operatorname{Im} \partial_{2}$. There is only one 2-simplex U

$$
\partial_{2}(n U)=n(2 a-b),
$$

which implies that ∂_{2} is injection, hence $H_{2}(K)=0$. Here $b=\left[v_{0}, v_{2}\right]$. Also $\operatorname{Im} \partial_{2}=\mathbb{Z}[2 a-b]$. Exercise 4.6 implies that $\{a-b, a\}$ is a basis for $C_{1}(K)$. Another application of the same exercise then implies that also $\{a-b+a, a\}=$ $\{2 a-b, a\}$ is a basis for $C_{1}(K)$. Hence

$$
H_{1}(K)=(\mathbb{Z}[2 a-b] \oplus \mathbb{Z}[a]) / \mathbb{Z}[2 a-b] \cong \mathbb{Z}[a] \cong \mathbb{Z}
$$

5. Find two short exact sequences of the form

$$
\begin{aligned}
& 0 \longrightarrow \mathbb{Z} \xrightarrow{f} C \xrightarrow{g} \mathbb{Z}_{2} \longrightarrow 0 \\
& 0 \longrightarrow \mathbb{Z} \xrightarrow{f} C^{\prime} \xrightarrow{g} \mathbb{Z}_{2} \longrightarrow 0
\end{aligned}
$$

where C and C^{\prime} are not isomorphic as groups.
Solution: Consider the sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \mathbb{Z}_{2} \longrightarrow 0
$$

where $f(n)=2 n, g(n)=n \bmod 2$ and the sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{f^{\prime}} \mathbb{Z} \oplus \mathbb{Z}_{2} \xrightarrow{g^{\prime}} \mathbb{Z}_{2} \longrightarrow 0
$$

where $f^{\prime}(n)=(n, 0)$ and $g^{\prime}(x, y)=y$. Then sequences are exact. Clearly \mathbb{Z} is not isomorphic to $\mathbb{Z} \oplus \mathbb{Z}_{2}$, for example because one of the groups is torsion free and the other is not.
6. Suppose H is a free abelian group, G is an abelian group and $f: G \rightarrow H$ is a surjective homomorphism. Prove that there is a homomorphism $f^{\prime}: H \rightarrow G$ such that $f \circ f^{\prime}=\mathrm{id}$.
Solution: Let $A \subset H$ be a basis of H. For every $a \in A$ choose an element $b_{a} \in G$ such that $f\left(b_{a}\right)=a$. This is possible, since f is a surjection. Now by the universal property of the basis there exists a (unique) homomorphism $f^{\prime}: H \rightarrow G$ with the property $f^{\prime}(a)=b_{a}$. Now for every $a \in A$ we have

$$
f\left(f^{\prime}(a)\right)=f\left(b_{a}\right)=a .
$$

4
This implies that $f \circ f^{\prime}$ coincides with identity on the elements of basis. This implies that $f \circ f^{\prime}=\mathrm{id}$.
7. This exercise has moved to the next exercise session.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

