Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 4
Solutions

1. Let A be a set. For every $a \in A$ define $f_{a}: A \rightarrow \mathbb{Z}$ by

$$
f_{a}(x)= \begin{cases}1, & \text { if } x=a \\ 0, & \text { otherwise }\end{cases}
$$

Prove that the set $\left\{f_{a} \mid a \in A\right\}$ is a basis of the abelian group $\mathbb{Z}^{(A)}$.
Solution: Suppose $g \in \mathbb{Z}^{(A)}$ and let $B=\left\{a_{1}, \ldots, a_{k}\right\}$ be its carrier. For $i=1, \ldots, k$ denote $n_{i}=g\left(a_{i}\right)$. Then

$$
g=n_{1} f_{a_{1}}+\ldots+n_{k} f_{a_{k}}=\sum_{i=1}^{k} n_{i} f_{a_{i}}
$$

Hence $\left\{f_{a} \mid a \in A\right\}$ generates $Z^{(A)}$.
Suppose $a_{1}, \ldots, a_{k} \in A$ are different elements and $n_{1}, \ldots, n_{k} \in \mathbb{Z}$ are such that

$$
g=n_{1} f_{a_{1}}+\ldots+n_{k} f_{a_{k}}=\sum_{i=1}^{k} n_{i} f_{a_{i}}=0 .
$$

Then

$$
n_{i}=g\left(a_{i}\right)=0
$$

for all $i=1, \ldots, k$.
Hence $\left\{f_{a} \mid a \in A\right\}$ is independent.
2. Prove that a free abelian group G is torsion-free i.e. for every $g \in G$ and $n \in \mathbb{N}$ the equation

$$
n g=0
$$

is true if and only if $n=0$ or $g=0$.
Conclude that $\mathbb{Z}_{n}, n>1$ or \mathbb{Q} / \mathbb{Z} are not free abelian.
Solution: Let A be a basis of G. Suppose $x=n_{1} a_{1}+\ldots+n_{k} a_{k} \in G$, where $a_{i} \in A$ for all $i=1, \ldots, k, n_{i} \in \mathbb{Z}$.
Now

$$
n x=\left(n n_{1}\right) a_{1}+\ldots+\left(n n_{k}\right) a_{k}=0
$$

if and only if $n n_{i}=0$ for all i, since A is independent. If $n \neq 0$, this implies that $n_{i}=0$ for all $i=1, \ldots, k$. In this case $x=0$.
\mathbb{Z}_{n} is clearly not torsion-free, for $n>1$, since $n \overline{1}=0$ in \mathbb{Z}_{n}. Also \mathbb{Q} / \mathbb{Z} is not torsion-free, since for example $n \frac{\overline{1}}{n}=0$ in \mathbb{Q} / \mathbb{Z}.
3. Suppose $A \subset \mathbb{Q}$ contains at least 2 points. Show that A is not independent. Conclude that \mathbb{Q} is not a free abelian group, although it is torsion-free.

Solution: Suppose $x, y \in A, x \neq y$. Then $x=a / c, y=b / d$, where $a, b, c, d \in$ $\mathbb{Z}, c, d \neq 0$ and at least one of the numbers a or b is not zero. Now

$$
(b c) x+(-a d) y=0
$$

where at least one of the numbers $b c$ or $-a d$ is not equal to zero. Hence A is not independent.

It follows that if \mathbb{Q} is free abelian group, its basis has at most 1 element. It cannot have 0 elements, since then \mathbb{Q} would be trivial group $\{0\}$. Suppose \mathbb{Q} has a basis $\{x\}$, where $x=a / b$. We may assume that $a, b>0$. Since $\{x\}$ is a basis of \mathbb{Q}, every element of \mathbb{Q} equals $n x$ for some $n \in \mathbb{Z}$. In particular it follows that there exists $n>0$ such that

$$
\frac{1}{b+1}=n \frac{a}{b} .
$$

This implies that

$$
b=n a(b+1),
$$

which is impossible. Hence \mathbb{Q} is not free.
4. a) Let G be an abelian group and denote

$$
2 G=\{2 g \mid g \in G\} .
$$

Prove that $2 G$ is a subgroup of G and show that if $G \cong H$, then $G / 2 G \cong$ $H / 2 H$.
b) Suppose A and B are sets, A is finite. Prove that $\mathbb{Z}^{(A)} \cong \mathbb{Z}^{(B)}$ if and only if B is finite and has the same amount of elements as A.
Solution: a) $2 G$ is clearly non-empty. If $x=2 a, y=2 b \in 2 G, a, b \in G$ then

$$
x-y=2(a-b)
$$

(notice that commutativity of the addition is essential here). Hence $2 G$ is a subgroup of G.
Suppose $f: G \rightarrow H$ is an isomorphism. Then clearly $f(2 G) \subset 2 H$ (since f is a homomorphism). By the same reasoning $f^{-1}(2 H) \subset 2 G$, i.e. $2 H \subset f(2 G)$. Hence

$$
f(2 G)=2 H
$$

Since f clearly induces isomoprhism $G / 2 G$ and $H / f(2 G)=H / 2 H$, the claim is proved.
b) Suppose $\mathbb{Z}^{(A)} \cong \mathbb{Z}^{(B)}$. Then by a) also

$$
\mathbb{Z}^{(A)} / 2 \mathbb{Z}^{(A)} \cong \mathbb{Z}^{(B)} / 2 \mathbb{Z}^{(B)}
$$

Now consider a mapping $h: \mathbb{Z}^{(A)} \rightarrow \mathbb{Z}_{2}^{(A)}$ defined to be a natural projection $\mathbb{Z}[a] \rightarrow \mathbb{Z}_{2}[a]$ on every summond $\mathbb{Z}[a]$ of $\mathbb{Z}^{(A)} . h$ is clearly a surjection and its kernel is exactly $2 \mathbb{Z}^{(A)}$. Hence there is an isomorphism $\mathbb{Z}^{(A)} / 2 \mathbb{Z}^{(A)} \cong Z_{2}^{(A)}$. Of course for the same reason $\mathbb{Z}^{(B)} / 2 \mathbb{Z}^{(B)} \cong Z_{2}^{(B)}$.

Hence if $\mathbb{Z}^{(A)} \cong \mathbb{Z}^{(B)}$, then also $\mathbb{Z}_{2}^{(A)} \cong \mathbb{Z}_{2}^{(B)}$. If A is a finite set, then $\mathbb{Z}_{2}^{(A)}$ is finite and contains exactly $2^{\mid} A \mid$ elements. If A is infinite, then $\mathbb{Z}_{2}^{(A)}$ is also infinite.
Hence it follows that if A is finite, also B must be finite and $2^{\mid} A\left|=2^{\mid} B\right|$. Since the exponential function is an injection, this implies that $|A=|B|$.

The converse statement is almost trivial, so we skip the precise proof.
5.] a)Let G be a free group on 3 free generators a, b, c. Show that $\{c-a, b-a, a\}$ is also a basis of G.
b) Let G be a free group on 4 free generators a, b, c, d. Prove that the set $\{a+c+d, b-a+d, d\}$ is independent.
Solution: a) To show that the set $\{c-a, b-a, a\}$ generates the whole group it is enough to show that it generates at least the generators a, b, c. But

$$
\begin{gathered}
a=a, \\
b=(b-a)+a, \\
c=(c-a)+a .
\end{gathered}
$$

It remains to show that the set is independent. Suppose

$$
n(c-a)+m(b-a)+l a=0 .
$$

Then

$$
(l-n-m) a+m b+n c=0 .
$$

Since $\{a, b, c\}$ is independent, this implies that $m=n=l-n-m=0$. Hence $n=m=l=0$.
b) Suppose

$$
n(a+c+d)+m(b-a+d)+l d=0 .
$$

Then

$$
(n-m) a+m b+n c+(n+m+l) d=0 .
$$

Since $\{a, b, c, d\}$ is independent, it follows that

$$
n-m=m=n=n+m+l=0
$$

which implies easily that $n=m=l=0$.
6. Suppose $\{\alpha, \beta\}$ is a basis of a group G. Prove that $\{\alpha \pm \beta, \beta\}$ is also a basis of G.
Solution: Since $\alpha=(\alpha \pm \beta) \mp \beta$, it follows that the set $\{\alpha \pm \beta, \beta\}$ generates G.
On the other hand if

$$
n(\alpha \pm \beta)+m \beta=0
$$

then $n \alpha+(m \pm n) \beta=0$, which implies that $n=0=m \pm n$.
7. Suppose X is a topological space. Singular 1 -simplices in X are mappings $f: I=[0,1] \rightarrow X$ and are also called pathes in X. If $f(0)=f(1)$ the path f is called the loop. Show that as an element of $C_{1}(X)$ the path f is a cycle if and only if it a loop.
Suppose $f, g: I \rightarrow X$ are pathes and $g(0)=f(1)$. Then we can define their product $f \cdot g: I \rightarrow X$ by
(continues on the other side)

$$
(f \cdot g)(t)=\left\{\begin{array}{l}
f(2 t), \text { if } 0 \leq t \leq 1 / 2 \\
g(2 t-1), \text { if } 1 / 2 \leq t \leq 1
\end{array}\right.
$$

Prove that in this case $f+g-f \cdot g$ is a boundary element in $C_{1}(X)$ by constucting the explicit 2-simplex in X, whose boundary is $f+g-f \cdot g$. (Hint: see the picture below.)

Conclude that if f and g are loops, then

$$
[f]+[g]=[f \cdot g] \in H_{1}(X) .
$$

Solution: Since

$$
\partial(f)=f(1)-f(0),
$$

it follows that $f: I \rightarrow X$ is a cycle if and only if $f(0)=f(1)$.
Suppose $f, g: I \rightarrow X$ and $f(1)=g(0)$. Define $H: \Delta_{2} \rightarrow X$ by

$$
H(x, y)=f \cdot g(y+x / 2)=\left\{\begin{array}{l}
f(2 y+x), \text { if } y \leq-\frac{1}{2} x+\frac{1}{2} \\
g(2 y+x-1), \text { if } y \geq-\frac{1}{2} x+\frac{1}{2}
\end{array}\right.
$$

Then it is easy to see that

$$
\partial H=f+g-f \cdot g .
$$

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

