Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 2
19.09-23.09.2011

1. Suppose V is a vector space. Show that the collection $K=\left\{\sigma_{i}\right\}_{i \in I}$ of simplices in V is a simplicial complex if and only if
1) For every simplex σ in K its every face also belongs to K.

2') For every $x \in \bigcup_{i \in I} \sigma_{i}$ there is a unique $i \in I$ such that x is an interior point of the simplex σ_{i}.

Solution: Suppose K is a simplicial complex and $x \in \bigcup_{i \in I} \sigma_{i}$. Then $x \in \sigma_{i}$ for some $i \in I$. Suppose v_{0}, \ldots, v_{n} are vertices of σ_{i}. Then

$$
x=t_{0} v_{0}+t_{1} v_{1}+\ldots+t_{n} v_{n}
$$

where $t_{i} \geq 0$ for all $i=0, \ldots, n$ and $\sum_{i=0}^{n} t_{i}=1$. Define

$$
J=\left\{i \in\{0, \ldots, n\} \mid t_{i}>0\right\} .
$$

Then J is non-empty and the simplex σ spanned by the simplices $\left\{v_{i} \| i \in J\right\}$ contains x as an interior point.
Let us prove the uniqueness of σ. Suppose $x \operatorname{int} \sigma \cap \operatorname{int} \sigma^{\prime}$. Then in particular $x \in \sigma \cap \sigma^{\prime}$. Hence $\sigma^{\prime \prime}=\sigma \cap \sigma^{\prime}$ is non-empty, thus is a face of σ and σ^{\prime}. On the other hand $\sigma^{\prime \prime}$ intersects the interior of σ (and $\left.\sigma^{\prime}\right)$ - at least in x. The only face of a simplex, which intersects the interior of the simplex is the simplex itself. Hence $\sigma=\sigma^{\prime \prime}=\sigma$. This proves the uniqueness.

Suppose K is a collection of simplices, that satisfies conditions 1) and 2^{\prime}). Suppose $\sigma, \sigma^{\prime} \in K$. Write vertices of σ as $a_{0}, \ldots, a_{k}, b_{1}, \ldots, b_{n}$ and the vertices of σ^{\prime} as $a_{0}, \ldots, a_{k}, c_{1}, \ldots, c_{m}$, where $b_{i} \neq c_{j}$ for all $i=1, \ldots, n, j=1, \ldots, m$. Let $\sigma^{\prime \prime}$ be a face of σ spanned by the vertices $\left\{a_{0}, \ldots, a_{k}\right\}$. By condition 1) $\sigma^{\prime \prime} \in K$ Clearly $\sigma \cap \sigma^{\prime}$ is convex and contains points a_{0}, \ldots, a_{k}, so

$$
\sigma^{\prime \prime} \subset \sigma \cap \sigma^{\prime}
$$

It remains to show the opposite inclusion. Suppose $x \in \sigma \cap \sigma^{\prime}$. Then

$$
\begin{aligned}
& x=t_{0} a_{0}+\ldots+t_{k} a_{k}+r_{1} b_{1}+\ldots+r_{n} b_{n}, \\
& x=t_{0}^{\prime} a_{0}+\ldots+t_{k}^{\prime} a_{k}+r_{1}^{\prime} b_{1}+\ldots+r_{n}^{\prime} b_{n},
\end{aligned}
$$

as convex combinations. If some $r_{i} \neq 0$ or some $r_{i}^{\prime} \neq 0$, it follows that x belongs to the interior of two different simplices, which contradicts condition $2)^{\prime}$. Hence $x \in \sigma^{\prime \prime}$. Thus we have shown that

$$
\sigma \cap \sigma^{\prime}
$$

is either empty or is a common face of σ and σ^{\prime}.
2. Suppose L is a subcomplex of a simplicial complex K. Show that
a) The weak topology on the simplicial complex $|L|$ is the same as the relative topology on $|L|$ induced by the weak topology of $|K|$.
b) $|L|$ is closed in $|K|$.

Solution: First notice the following. Suppose $\sigma \in K$. Then

$$
|L| \cap \sigma=\bigcup_{i \in I} \sigma_{i}
$$

where I is some subset of the set of all faces of σ and $\sigma_{i} \in L$ for lal $i \in I$. In particular I is finite.
Suppose $C \subset|L|$ is closed in $|L|$ with respect to the weak topology of $|L|$. Let $\sigma \in K$ be an arbitrary simplex. Then

$$
C \cap \sigma=(C \cap|L|) \cap \sigma=C \cap(|L| \cap \sigma)=C \cap\left(\bigcup_{i \in I} \sigma_{i}\right)=\bigcup_{i \in I}\left(C \cap \sigma_{i}\right) .
$$

Every $C \cap \sigma_{i}$ is closed in σ_{i}, since C is closed with respect to the weak topology of $|L|$. Moreover σ_{i} is closed in σ (being its face). Hence $C \cap \sigma_{i}$ is closed in σ for all $i \in I$. Since I is finite, $C \cap \sigma$ is closed in σ as a finite union of closed sets. Since this is true for every $\sigma \in K$, by the definition of the weak topology C is closed in $|K|$. In particular

1) C is closed with respect to the relative topology on $|L|$ and
2) $|L|$ is closed in $|K|$.

Let $C \subset|L|$ be closed in $|L|$ with respect to the relative topology of $|L|$ as a subset of $|K|$. Since we already know that $|L|$ is closed in $|K|$ this implies that C is closed in $|K|$. By the definition of the weak topology this means that $C \cap \sigma$ is closed in σ for every $\sigma \in K$. In particular this is true for every $\sigma \in L$. Hence C is closed in the weak topology of $|L|$.
3. a) Suppose σ is a simplex in \mathbb{R}^{m}, with vertices $\left\{v_{0}, \ldots, v_{n}\right\}$. Prove that

$$
\operatorname{diam} \sigma=\max \left\{\left|v_{i}-v_{j}\right|\right\},
$$

where $|\cdot|$ is a standard norm on \mathbb{R}^{m}.
b) Suppose K is a finite simplicial complex in \mathbb{R}^{m}. Let σ^{\prime} be a simplex in a first barycentric division $K^{(1)}$, with vertices $\left\{b\left(\sigma_{0}\right), b\left(\sigma_{1}\right), \ldots, b\left(\sigma_{n}\right)\right\}$, where $\sigma_{0}<\ldots<\sigma_{n}=\sigma \in K$. Prove that

$$
\operatorname{diam} \sigma^{\prime} \leq \frac{n}{n+1} \operatorname{diam} \sigma
$$

Solution: a) Let

$$
M=\max \left\{\left|v_{i}-v_{j}\right|\right\} .
$$

It is enough to prove that for all $x, y \in \sigma$

$$
|x-y| \leq M
$$

First that us prove this in special case $y=v_{j}, j=0, \ldots, n$. Now

$$
x=t_{0} v_{0}+\ldots+t_{n} v_{n}
$$

where $t_{i} \geq 0$ for all i and $\sum t_{i}=1$. Then

$$
\left|x-v_{j}\right|=\left|\sum t_{i} v_{i}-\sum t_{i} v_{j}\right| \leq \sum t_{i}\left|v_{i}-v_{j}\right| \leq\left(\sum t_{i}\right) M=M .
$$

Next suppose $y=\sum t_{i}^{\prime} v_{i}$. Then

$$
|x-y|=\left|\sum t_{i}^{\prime} x-\sum t_{i}^{\prime} v_{i}\right| \leq \sum t_{i}^{\prime}\left|x-v_{i}\right| \leq\left(\sum t_{i}^{\prime}\right) M=M .
$$

b) By a) it is enough to show that

$$
\left|b\left(\sigma_{i}\right)-b\left(\sigma_{j}\right)\right| \leq \frac{n}{n+1} \operatorname{diam} \sigma
$$

for all i, j. We may assume $i<j$. Since $b\left(\sigma_{i}\right), b\left(\sigma_{j}\right) \in \sigma_{j}$, by the proof of a) we obtain

$$
\left|b\left(\sigma_{i}\right)-b\left(\sigma_{j}\right)\right| \leq \max \left\{\left|b\left(\sigma_{j}\right)-v_{k}\right|\right\}
$$

where v_{k} goes through all the vertices v_{0}, \ldots, v_{l} of σ_{j}. Now

$$
\begin{aligned}
&\left|b\left(\sigma_{j}\right)-v_{k}\right|=\left|\sum_{m=0}^{l} 1 /(l+1) v_{m}-\sum 1 /(l+1) v_{k}\right|=\left|\sum_{m \neq k} 1 /(l+1)\left(v_{m}-v_{k}\right)\right| \leq \\
& \leq \sum_{m \neq k} 1 /(l+1)\left|v_{m}-v_{k}\right| \leq \sum_{m \neq k} 1 /(l+1) \operatorname{diam} \sigma=l /(l+1) \operatorname{diam} \sigma
\end{aligned}
$$

Also $l \leq n$, so

$$
l /(l+1)=1 /(1+1 / l) \leq 1 /(1+1 / n)=n /(n+1) .
$$

Hence

$$
\operatorname{diam} \sigma^{\prime} \leq \frac{n}{n+1} \operatorname{diam} \sigma
$$

4. Suppose g is a simplicial approximation of the continuous mapping $f:|K| \rightarrow$ $\left|K^{\prime}\right|$. Show that

$$
f(\operatorname{St}(v)) \subset \operatorname{St}(g(v))
$$

for every vertex $v \in K$.
Solution: Suppose $x \in S t(v)$. Then there exists $\sigma \in K$ such that $x \in \operatorname{int} \sigma$ and v is a vertex of σ. Suppose vertices of σ are $v_{0}=v, v_{1}, \ldots, v_{n}$. Then there exist $t_{i}>0, i=0, \ldots, n$ such that $\sum t_{i}=1$ and

$$
x=t_{0} v_{0}+\ldots+t_{n} v_{n}
$$

Since g is simplicial we have

$$
g(x)=t_{0} g\left(v_{0}\right)+\ldots g\left(v_{n}\right),
$$

so $g(x) \in \operatorname{int} \sigma^{\prime}$, where σ^{\prime} is a simplex of K^{\prime} spanned by $g\left(v_{0}\right), \ldots, g\left(v_{n}\right)$. On the other hand suppose $\sigma^{\prime \prime} \in K^{\prime}$ is a unique simplex that contains $f(x)$ in its interior. Then, since g is a simplicial approximation of $f, g(x) \in \sigma^{\prime \prime}$. Since also $g(x) \in \operatorname{int} \sigma^{\prime}, \sigma^{\prime}$ is a face of $\sigma^{\prime \prime}$. In particular $g(v)$ is a vertex of $\sigma^{\prime \prime}$. Hence

$$
f(x) \in \operatorname{St}(g(v))
$$

5. Consider the boundary of the equilateral triangle σ as a 2 -simplex with vertices v_{0}, v_{2}, v_{4}. For odd $i=1, \ldots 5$ denote by v_{i} the barycentre of the 1 -simplex [v_{i-1}, v_{i+1}], where we identify $v_{6}=v_{0}$.
Let $K=K(\partial \sigma)$. Let $f:|K| \rightarrow|K|$ be the unique simplicial mapping $f:\left|K^{(1)}\right| \rightarrow$ $\left|K^{(1)}\right|$ defined by $f\left(v_{i}\right)=v_{i+1}$. Prove that as a mapping $f:|K| \rightarrow|K| f$ does not have a simplicial approximation, but as a mapping $f:\left|K^{(1)}\right| \rightarrow|K| f$ has
exactly 8 simplicial appoximations. List all approximations.

Solution: Suppose K and L are simplicial complexes and $f:|K| \rightarrow|L|$ is continuous. By the Lemma 1.2.19 f has a simplicial approximation if and only if for every vertex v of K there exists a vertex $v^{\prime} \in L$ such that

$$
f(\operatorname{St}(v)) \subset \operatorname{St}\left(v^{\prime}\right)
$$

Moreover any choice of such $v^{\prime}=g(v)$ for every $v \in K$ defines a unique simplicial approximation of f.

First let us consider f as a mapping $|K| \rightarrow|K|$. Now $f\left(\operatorname{St}\left(v_{0}\right)\right)$ looks like this:

On the other hand stars of all vertices of K look like this:

Star of v_{0}

Star of v_{2}

Star of v_{4}

So one sees immediately, that no vertex $v \in K$ has the property

$$
f\left(\operatorname{St}\left(v_{0}\right)\right) \subset \operatorname{St}(v) .
$$

In particular f does not have a simplicial approximation.
Now let us consider f as mapping $\left|K^{(1)}\right| \rightarrow|K|$. The stars of the vertices of $|K|$ are already drawn above. Let us draw the sets $f(\operatorname{St}(v)$ for all vertices v of $\left|K^{(1)}\right|$.

v_{2}

$f\left(\operatorname{St}\left(v_{1}\right)\right) \quad f\left(\operatorname{St}\left(v_{3}\right)\right) \quad f\left(\operatorname{St}\left(v_{5}\right)\right)$
We see immediately that for $v=v_{0}, v_{2}, v_{4}$ there are exactly two choices of a vertex $v^{\prime} \in K$ such that

$$
f(\operatorname{St}(v)) \subset \operatorname{St}\left(v^{\prime}\right)
$$

For instance for v_{0} we can choose $v^{\prime}=v_{0}$ or $v^{\prime}=v_{2}$. On the other hand for $v=v_{1}, v_{3}, v_{5}$ there is only one choice. This implies that there are exactly $2 \cdot 2 \cdot 2=8$ simplicial approximations g. We have

$$
\begin{gathered}
g\left(v_{i}\right)=v_{i+1}(\bmod 6) \text { for odd } i, \\
g\left(v_{i}\right) \in\left\{v_{i}, v_{i+2}\right\}(\bmod 6 \text { for even } i .
\end{gathered}
$$

6. a) Suppose $m \in \mathbb{N}$. Let K be a finite m-dimensional simplicial complex and K^{\prime} be a simplicial complex whose dimension is $>m$. Show that every continuous mapping $f:|K| \rightarrow\left|K^{\prime}\right|$ is homotopic to a mapping, which is not surjective (Hint: simplicial approximation).
b) Suppose $m<n$. Prove that any continuous mapping $f: S^{m} \rightarrow S^{n}$ is homotopic to a constant mapping.

Solution: a)Suppose $f:|K| \rightarrow\left|K^{\prime}\right|$ is continuous. By the Simplicial Approximation Theorem f is homotopic to a simplicial mapping $g:|K|^{(n)} \rightarrow|K|$ for some $n \in \mathbb{N}$. Now $|K|^{(n)}$ is also m-dimensional. Since g is simplicial it maps k-simplex to a simplex, whose dimension is $\leq k$, for all $k \in \mathbb{N}$. In particular, since $|K|^{(n)}$ is m-dimensional it follows that $g\left(|K|^{(n)}\right) \subset\left|K^{\prime}\right|^{m} \neq\left|K^{\prime}\right|$. Hence g is not surjective.
b) S^{m} is a polyhedron of a finite m-dimensional complex, and S^{n} is a polyhedron of a complex with dimension $n>m$. Hence by a) a continuous mapping $f: S^{m} \rightarrow S^{n}$ is homotopic to a mapping $g: S^{m} \rightarrow S^{n}$, which is not surjective. Hence there exists $y \in S^{n}$ such that $g\left(S^{m}\right) \subset S^{n} \backslash\{y\}=X$. It is
a well-known fact that X is homeomorphic to \mathbb{R}^{n}, in particular contractible to a point. Hence g is homotopic to a constant mapping.
7. Suppose $x \in|K|$.
a)Define $L=\{\sigma \in K \mid x \notin \sigma\}$. Show that L is a simplicial complex and

$$
|K| \backslash|L|=\operatorname{St}(x) .
$$

Conclude that $\operatorname{St}(x)$ is an open neighbourhood of x in $|K|$.
b)Suppose $x \in|K|$ and all the vertices of $\operatorname{car}(x)$ are v_{0}, \ldots, v_{n}.

Prove that
$\operatorname{St}(x)=\bigcup\{\operatorname{int} \sigma \mid \operatorname{car}(x)<\sigma\}=\bigcup\left\{\operatorname{int} \sigma \mid v_{0}, \ldots, v_{n}\right.$ are vertices of $\left.\sigma\right\}$.
and

$$
\operatorname{St}(x)=\bigcap_{i=0}^{n} \operatorname{St}\left(v_{i}\right) .
$$

Solution: a) L is clearly closed under faces, so is a simplicial subcomplex of K. Let us prove that

$$
|K| \backslash|L|=\operatorname{St}(x) .
$$

Suppose $y \in|K|$ and let $\sigma \in K$ be the unique simplex such that $y \in$ Int σ. Then $y \in \operatorname{St}(x)$ if and only if $x \in \sigma$, which is true if and only if $\sigma \notin L$. Since σ is a carrier of y and L is a subcomplex the condition $\sigma \notin L$ is equivalent to $y \notin|L|$.
By exercise 2) $|L|$ is closed, hence $|K| \backslash|L|$ is open. Thus $\operatorname{St}(x)$ is an open neighbourhood of x in $|K|$.
b) If $x \in \sigma$, where $\sigma \in K$, then $\operatorname{car}(x)$ must be a face of σ, which proves that

$$
\operatorname{St}(x)=\bigcup\{\operatorname{int} \sigma \mid \operatorname{car}(x)<\sigma\} .
$$

Now it is clear that $\operatorname{car}(x)<\sigma$ if and only if v_{0}, \ldots, v_{n} are vertices of σ. By applying this result to every vertex v_{i} we obtain

$$
\operatorname{St}\left(v_{i}\right)=\bigcup\left\{\operatorname{int} \sigma \| v_{i} \in \sigma,\right\}
$$

so

$$
\operatorname{St}(x)=\bigcap_{i=0}^{n} \operatorname{St}\left(v_{i}\right) .
$$

