Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 1

1. Consider the pairs $\left(V,\left\{v_{1}, \ldots, v_{n}\right\}\right)$, where $V$ is finite-dimensional vector space and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a fixed basis of $V$. Thus for every $n \in \mathbb{N}$ the pair $\left(\mathbb{R}^{n},\left\{e_{1}, \ldots, e_{n}\right\}\right)$ is an example of such pair. Moreover for every pair $\left(V,\left\{v_{1}, \ldots, v_{n}\right\}\right)$ there is a unique linear bijection $f: V \rightarrow \mathbb{R}^{n}$ such that $f\left(v_{i}\right)=e_{i}$ for all $i \in\{1, \ldots, n\}$.
a) Assign to a pair $\left(V,\left\{v_{1}, \ldots, v_{n}\right\}\right)$ unique topology such that $f$ as above is a homeomorphism. Prove that $+: V \times V \rightarrow V$ and $\cdot: \mathbb{R} \times V \rightarrow V$ are continuous with respect to this topology.
Suppose $\left(W,\left\{w_{1}, \ldots, w_{m}\right\}\right)$ is another pair and $l: V \rightarrow W$ is linear. Deduce that $l$ is continuous.
b) Deduce that the topology so assigned to $V$ does not depend on the chosen basis $\left\{v_{1}, \ldots, v_{n}\right\}$ ) (apply a) to the identity mapping).
2. Suppose $A \subset V$ is a non-empty subset. Prove that $A$ is affine if and only if there is $v \in V$ and a linear subspace $W \subset V$ such that $A=x+W$. Moreover show that in this case $W$ is unique.
3. a) Show that an affine/convex set $A$ is closed under affine/closed combinations. In other words prove that if $a_{1}, \ldots, a_{n} \in A, r_{1}, \ldots, r_{n} \in \mathbb{R}, r_{1}+\ldots+r_{n}=$ 1 and in convex case also $r_{i} \geq 0$ for all $i=1, \ldots, n$, then

$$
r_{1} a_{1}+\ldots+r_{n} a_{n}=x \in A
$$

b) Suppose $A \subset V$. Prove that

$$
\begin{gathered}
\operatorname{aff}(A)=\left\{r_{1} a_{1}+\ldots+r_{n} a_{n} \mid a_{i} \in A, r_{1}+\ldots+r_{n}=1\right\} \\
\operatorname{conv}(A)=\left\{r_{1} a_{1}+\ldots+r_{n} a_{n} \mid a_{i} \in A, r_{i} \geq 0, r_{1}+\ldots+r_{n}=1\right\} .
\end{gathered}
$$

c) Suppose $f: C \rightarrow C^{\prime}$ is a convex mapping between convex sets. Prove that

$$
f\left(r_{1} a_{1}+\ldots+r_{n} a_{n}\right)=r_{1} f\left(a_{1}\right)+\ldots+r_{n} f\left(a_{n}\right),
$$

if $a_{1}, \ldots, a_{n} \in A, r_{1}, \ldots, r_{n} \in \mathbb{R}, r_{1}+\ldots+r_{n}=1$ and $r_{i} \geq 0$ for all $i=1, \ldots, n$.
4. Prove that the set of vertices of a simplex is uniquely determined by the simplex. (Hint: show that a point is not a vertex if and only if it is a midpoint of an interval contained entirely in the simplex).
5. Let $V$ be a finite-dimensional vector space.
a) Suppose $A \subset V$ and $\left\{v_{0}, \ldots, v_{n}\right\}$ is a maximal (with respect to inclusion) affinely independent subset of $A$. Prove that $\operatorname{aff}(A)=\operatorname{aff}\left(\left\{v_{0}, \ldots, v_{n}\right\}\right)$.
b) Suppose $C \subset V$ is convex and non-empty. Prove that $C$ has a non-empty interior with respect to aff $(C)$. (Hint: use a) and notice that simplex spanned by $\left\{v_{0}, \ldots, v_{n}\right\}$ is a subset of $C$.)
( Exercises continue on the other side!)
6. Show that the standard $n$-simplices defined by

$$
\begin{aligned}
& \Delta_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i} \geq 0 \text { for all } i, \sum_{i=1}^{n} x_{i} \leq 1\right\}, \\
& \Delta_{n}^{\prime}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid x_{i} \geq 0 \text { for all } i, \sum_{i=0}^{n} x_{i}=1\right\}
\end{aligned}
$$

are compact Hausdorff spaces (as subsets of Euclidean spaces).
7. Suppose $C \subset \mathbb{R}^{n}$ is a closed bounded convex set and 0 is the interior point of $C$. Let $f: \partial C \rightarrow S^{n-1}, f(x)=x /|x|$ and assume known that $f$ is a homeomorphism.
Prove that $G: \bar{B}^{n} \rightarrow C$ defined by

$$
G(t)=\left\{\begin{array}{l}
|t| \cdot\left(f^{-1} \frac{t}{|t|}\right) \text { if } t \neq 0 \\
0, \text { if } t=0
\end{array}\right.
$$

is a homeomorphism.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

