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Exercise 1

1. Consider the pairs (V, {v1, . . . , vn}), where V is �nite-dimensional vector
space and {v1, . . . , vn} is a �xed basis of V . Thus for every n ∈ N the
pair (Rn, {e1, . . . , en}) is an example of such pair. Moreover for every pair
(V, {v1, . . . , vn}) there is a unique linear bijection f : V → Rn such that
f(vi) = ei for all i ∈ {1, . . . , n}.
a) Assign to a pair (V, {v1, . . . , vn}) unique topology such that f as above is
a homeomorphism. Prove that +: V × V → V and · : R× V → V are conti-
nuous with respect to this topology.
Suppose (W, {w1, . . . , wm}) is another pair and l : V → W is linear. Deduce
that l is continuous.
b) Deduce that the topology so assigned to V does not depend on the chosen
basis {v1, . . . , vn}) (apply a) to the identity mapping).

Solution: a) Since f is a bijection, there is precisely one way to de�ne a
topology in V such that f will become a homeomorphism - de�ne U ⊂ V to
be open if and only if f(U) is open in Rn.
Since f is linear the following diagrams commute

V × V
f×f
��

+ // V

f
��

Rn × Rn + // Rn

R× V
id×f
��

· // V

f
��

R× Rn · // Rn.

Since f is a homeomorphism and algebraic operations + and · are continuous
in Rn, it follows that they are continuous in V .
Suppose l : V → W is linear. Denote by f ′ : W → Rm the corresponding li-
near bijection that de�nes topology in W . Then l′ = f ′ ◦ l ◦ f−1 : Rn → Rm is
linear. It is well-known fact that linear mappings between Euclidean spaces
are continuous (see Topology I). Hence l′ is continuous, thus also l = f ′−1◦l′◦f
is continuous.

b)Suppose V has two topologies de�ned as above using di�erent bases. The
identity mapping id : V → V is linear, hence continuous regardless of which
topologies we use in the image space and in the domain space. This implies in
particular that it is a homemorphism in any possible case, thus the topologies
must be the same .

2. Suppose A ⊂ V is a non-empty subset. Prove that A is a�ne if and only if
there is v ∈ V and a linear subspace W ⊂ V such that A = x+W . Moreover
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show that in this case W is unique.

Solution: Suppose A = v+W , where v ∈ V and W is a linear subspace. Let
x = v + w, x′ = v +W ′ ∈ A, t ∈ R. Then
(1− t)x+ tx′ = (1− t)(v + w) + t(v + w′) = v + (1− t)w + tw′ ∈ v +W,

since W is closed under scalar multiplication and addition. Hence A is a�ne
Incidently this also proves that any translation of an a�ne set is a�ne.

Conversely suppose A 6= ∅ is a�ne. Fix v ∈ A and de�ne

W = A− v = {a− v‖ a ∈ A}.
Then A = v + W . It remains to show that W is linear. Suppose t ∈ R and
a ∈ A. Then

t(a− v) + v = (1− t)v + ta ∈ A,
since A is a�ne, hence t(a − v) = (t(a − v) + v) − v ∈ A − v ∈ W . Hence
W is closed under scalar multiplication. Suppose x = a− v, x′ = a′− v ∈ W .
Then

(x+ y)/2 = (a+ a′)/2− v ∈ A− v = W,

since A is convex. Since we already know that W is closed under scalar
multiplication, it follows that

x+ y = 2 · (x+ y)/2 ∈ W.
We have shown that W is a linear subspace.

Another way to prove the claim is to show generally that a�ne sets are
invariant under translations (we already sort of it did above) and to prove
that a subset of V is a linear subspace if and only if it is a�ne and contains
0. We leave it to the reader to try this path of solution.

It remains to show the uniqueness. Suppose A = W + v = W ′ + v′, where
W,W ′ are linear subspaces. Then

W = W ′ + (v′ − v),

so in particular (0 ∈ W ′!) it follows that v′−v ∈ W . Moreover thus we obtain

W ′ = W − (v′ − v) ⊂ W,

since W is closed under substraction. By the symmetry also W ⊂ W ′.

3. a) Show that an a�ne/convex set A is closed under a�ne/closed combina-
tions. In other words prove that if a1, . . . , an ∈ A, r1, . . . , rn ∈ R, r1+. . .+rn =
1 and in convex case also ri ≥ 0 for all i = 1, . . . , n, then

r1a1 + . . .+ rnan = x ∈ A.
b) Suppose A ⊂ V . Prove that

aff(A) = {r1a1 + . . .+ rnan | ai ∈ A, r1 + . . .+ rn = 1},
conv(A) = {r1a1 + . . .+ rnan | ai ∈ A, ri ≥ 0, r1 + . . .+ rn = 1}.

c) Suppose f : C → C ′ is an a�ne mapping between convex sets. Prove that

f(r1a1 + . . .+ rnan) = r1f(a1) + . . .+ rnf(an),
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if a1, . . . , an ∈ A, r1, . . . , rn ∈ R, r1+. . .+rn = 1 and ri ≥ 0 for all i = 1, . . . , n.

Solution: a) We prove the claim in a�ne case, leaving the similar convex case
to the reader. Suppose A is a�ne a1, . . . , an ∈ A, r1, . . . , rn ∈ R, r1+. . .+rn =
1. We prove by induction on n that x = r1a1 + . . .+ rnan ∈ A. In case n = 1
there is nothing to prove. Suppose the claim is true for n − 1, n ≥ 2. Since
r1 + . . . + rn = 1 it follows that there is an index i = 1, . . . , n such that
ri 6= 1. We may assume that i = n. Let r = r1 + . . . + rn−1 = 1 − rn 6= 0.
De�ne r′i = ri/r for i = 1, . . . , n− 1. Then

∑n
i=1 r

′
1 + . . .+ r′n−1 = 1, hence by

inductive assumption

y = r′1x1 + . . .+ r′n−1xn−1 ∈ A.
Since x = (1 − rn)y + rnxn, it follows that x ∈ A by the very de�nition of
a�ne set.

b) Suppose A ⊂ B, where B is a�ne. Then by a) B contains the set

C = {r1a1 + . . .+ rnan | ai ∈ A, r1 + . . .+ rn = 1}
Clearly A ⊂ C. It remains to show that C is a�ne. This is an easy calcula-
tion and is skipped. The convex case is similar.

c) Induction on n. Again in case n = 1 there is nothing to prove. Suppose
the claim is true for n − 1, n ≥ 2. If rn = 0 or rn = 1 there is nothing
to prove. In the opposite case de�ne r′ = 1 − rn = r1 + . . . + rn−1 and
r′i = ri/r

′, i = 1, . . . , n − 1 as above. Let y = r′1x1 + . . . + r′n−1xn−1 ∈ A.
Then x = (1− rn)y+ rnxn. By the de�nition of a�ne mapping and inductive
assumption we obtain

f(x) = (1− rn)f(y) + rnf(xn) = r′(r′1f(x1) + . . .+ r′n−1f(xn−1)) + rnf(xn) =

= r1f(x1) + . . .+ rnf(xn).

4. Prove that the set of vertices of a simplex is uniquely determined by the
simplex. (Hint: show that a point is not a vertex if and only if it is a midpoint
of an interval contained entirely in the simplex).

Solution: As the hint suggests we prove that the set of vertices of a simplex
σ coincides with the set of all points of σ which are not midpoints of an in-
terval contained entirely in the simplex. Since this condition depends only on
the set σ itself, this implies the claim.

Let {v0, . . . , vn} be vertices of σ. Suppose �rst x ∈ σ is not a vertex point.
Then x = t0v0 + . . . + tnvn, where ti > 0 and tj > 0 for at least two distinct
indices i, j, i < j. Let ε > 0 be such that ti − ε > 0, tj − ε > 0. De�ne

y = t0v0 + t1v1 + . . .+ (ti + ε)vi + . . .+ (tj − ε)vj + . . .+ tnvn,

Z = t0v0 + t1v1 + . . .+ (ti − ε)vi + . . .+ (tj + ε)vj + . . .+ tnvn.

Then y, z ∈ σ, y 6= z and x = (y + z)/2.

Suppose conversely x = (y + z)/2, where y = t0v0 + . . . + tnvn, z = t′0v0 +
. . . + t′nvn ∈ σ, y 6= z. Then there exists an index i = 0, . . . , n such that
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ti 6= t′i, so in particular at least one of the numbers ti, t
′
i is not equal 0 and

consequently (ti + t′i)/2 > 0. Since

ti = 1−
∑
j 6=i

tj,

t′i = 1−
∑
j 6=i

t′j,

it follows that there must also be j 6= i such that tj 6= t′j (otherwise ti = t′i).
As above we conclude that (tj + t′j)/2 > 0. It follows that the midpoint

x = (y + z)/2

of the interval [y, z] has at least two coe�cients which di�er from zero, hence
cannot be a vertex of a simplex σ.

5. Let V be a �nite-dimensional vector space.
a) Suppose A ⊂ V and {v0, . . . , vn} is a maximal (with respect to inclusion)
a�nely independent subset of A. Prove that aff(A) = aff({v0, . . . , vn}).
b) Suppose C ⊂ V is convex and non-empty. Prove that C has a non-empty
interior with respect to aff(C). (Hint: use a) and notice that the simplex span-
ned by {v0, . . . , vn} is a subset of C.)

Solution: a) Since aff(A) is an a�ne set that contains points v0, . . . , vn, it
follows that

aff({v0, . . . , vn}) ⊂ aff(A).

To prove the converse inclusion it is enough to prove thatA ⊂ aff({v0, . . . , vn}).
Let us make counter assumption that there is x ∈ A such that x /∈ aff({v0, . . . , vn}).
We will prove that then the set {x, v0, . . . , vn} is a�nely independent, which
contradicts the maximality assumptions.
Suppose

r0v0 + . . .+ rnvn + rx = 0, where r0 + . . .+ rn + r = 0.

We must show that r0 = r1 = . . . = rn = r = 0. If r = 0, we are done, since
{v0, . . . , vn} is already known to be independent. Suppose r 6= 0. Then

x = (−r0/r)v0 + . . .+ (−rn/r)vn,

where (−r0/r) + . . . + (−rn/r) = 1. Hence the right side of the equation is
a�ne combination, which shows that x ∈ aff({v0, . . . , vn}). This contradicts
the choice of x.

b)Since V is �nite-dimensional, C cannot contain arbitrary big a�nely in-
dependent subsets. Hence there exists a maximal a�nely independent subset
{v0, . . . , vn} of C. By a)

W = aff(C) = aff({v0, . . . , vn}).

There exists unique a�ne mapping g : W → Rn such that f(vi) = ei, i =
0, . . . , n (make sure that g exists!). Moreover such g is then a homeomorphism.
Hence it is enough to show that g(C) has interior points. But g(C) is a convex
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subset of Rn, that contains points e0, . . . , en, hence also contains the standard
n-simplex ∆n that they span. The interior

int∆n = {(x1, . . . , xn)‖ xi > 0,
n∑

i=0

xi < 1, xi > 0 for all i}

of ∆n is clearly a non-empty open subset of Rn. Since it is a subset of g(C)
we are done.

6. Show that the standard n-simplices de�ned by

∆n = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i,
n∑

i=1

xi ≤ 1},

∆′n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0 for all i,
n∑

i=0

xi = 1}

are compact Hausdor� spaces (as subsets of Euclidean spaces).
Solution: We give the proof for ∆n, the other one being similar. It is enough
to show that ∆n is closed and bounded in Rn. It is closed as a �nite intersec-
tion of sets

Ai = {x ∈ Rn‖ xi ≥ 0},

B = {x ∈ Rn‖
n∑

i=1

xi ≤ 1},

which are easily seen to be closed as an inverse image of closed sets under
some obvious continuous mappings Rn → R.
Suppose x ∈ ∆n. Then |xi| ≤ 1 for all i = 1, . . . , n, hence

|x|2 =
n∑

i=1

x2i ≤
n∑

i=1

1 = n.

We conlude that ∆n is also bounded.

7. Suppose C ⊂ Rn is a closed bounded convex set and 0 is the interior point of
C. Let f : ∂C → Sn−1, f(x) = x/|x| and assume known that f is a homeo-
morphism.
Prove that G : B

n → C de�ned by

G(t) =

{
|t| ·

(
f−1 t

|t|

)
if t 6= 0,

0, if t = 0

is a homeomorphism.

Solution: Let us �rst prove that G is a bijection. First notice that G(t) = 0
if and only if t = 0. If t, t′ 6= 0 and G(t) = G(t′), then in particular

f−1
t

|t|
/|f−1 t

|t|
| = G(t)/|G(t)| = G(t′)/|G(t′)| = f−1

t

|t′|
/|f−1 t′ |t

′||.

Letting a = f−1 t
|t| , b = f−1 t′ |t′| we see that f(a) = f(b). Hence t

|t| = f(a) =
t
′ |t′| = g(b). Since

|t| t
|t|

= G(t) = G(t′) = |t′|t′ |t
′| = |t′| t

|t|
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and t
|t| 6= 0, this implies that |t| = |t′|. Hence

t = |t| · (t/|t|) = |t′| · (t′/|t′|) = t′


