Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 1

1. Consider the pairs $\left(V,\left\{v_{1}, \ldots, v_{n}\right\}\right)$, where V is finite-dimensional vector space and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a fixed basis of V. Thus for every $n \in \mathbb{N}$ the pair ($\left.\mathbb{R}^{n},\left\{e_{1}, \ldots, e_{n}\right\}\right)$ is an example of such pair. Moreover for every pair $\left(V,\left\{v_{1}, \ldots, v_{n}\right\}\right)$ there is a unique linear bijection $f: V \rightarrow \mathbb{R}^{n}$ such that $f\left(v_{i}\right)=e_{i}$ for all $i \in\{1, \ldots, n\}$.
a) Assign to a pair ($V,\left\{v_{1}, \ldots, v_{n}\right\}$) unique topology such that f as above is a homeomorphism. Prove that $+: V \times V \rightarrow V$ and $:: \mathbb{R} \times V \rightarrow V$ are continuous with respect to this topology.
Suppose $\left(W,\left\{w_{1}, \ldots, w_{m}\right\}\right)$ is another pair and $l: V \rightarrow W$ is linear. Deduce that l is continuous.
b) Deduce that the topology so assigned to V does not depend on the chosen basis $\left\{v_{1}, \ldots, v_{n}\right\}$) (apply a) to the identity mapping).

Solution: a) Since f is a bijection, there is precisely one way to define a topology in V such that f will become a homeomorphism - define $U \subset V$ to be open if and only if $f(U)$ is open in \mathbb{R}^{n}.
Since f is linear the following diagrams commute

Since f is a homeomorphism and algebraic operations + and \cdot are continuous in \mathbb{R}^{n}, it follows that they are continuous in V.
Suppose $l: V \rightarrow W$ is linear. Denote by $f^{\prime}: W \rightarrow \mathbb{R}^{m}$ the corresponding linear bijection that defines topology in W. Then $l^{\prime}=f^{\prime} \circ l \circ f^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear. It is well-known fact that linear mappings between Euclidean spaces are continuous (see Topology I). Hence l^{\prime} is continuous, thus also $l=f^{\prime-1} \circ l^{\prime} \circ f$ is continuous.
b)Suppose V has two topologies defined as above using different bases. The identity mapping id: $V \rightarrow V$ is linear, hence continuous regardless of which topologies we use in the image space and in the domain space. This implies in particular that it is a homemorphism in any possible case, thus the topologies must be the same .
2. Suppose $A \subset V$ is a non-empty subset. Prove that A is affine if and only if there is $v \in V$ and a linear subspace $W \subset V$ such that $A=x+W$. Moreover
show that in this case W is unique.
Solution: Suppose $A=v+W$, where $v \in V$ and W is a linear subspace. Let $x=v+w, x^{\prime}=v+W^{\prime} \in A, t \in \mathbb{R}$. Then
$(1-t) x+t x^{\prime}=(1-t)(v+w)+t\left(v+w^{\prime}\right)=v+(1-t) w+t w^{\prime} \in v+W$, since W is closed under scalar multiplication and addition. Hence A is affine Incidently this also proves that any translation of an affine set is affine.

Conversely suppose $A \neq \emptyset$ is affine. Fix $v \in A$ and define

$$
W=A-v=\{a-v \| a \in A\} .
$$

Then $A=v+W$. It remains to show that W is linear. Suppose $t \in \mathbb{R}$ and $a \in A$. Then

$$
t(a-v)+v=(1-t) v+t a \in A
$$

since A is affine, hence $t(a-v)=(t(a-v)+v)-v \in A-v \in W$. Hence W is closed under scalar multiplication. Suppose $x=a-v, x^{\prime}=a^{\prime}-v \in W$. Then

$$
(x+y) / 2=\left(a+a^{\prime}\right) / 2-v \in A-v=W,
$$

since A is convex. Since we already know that W is closed under scalar multiplication, it follows that

$$
x+y=2 \cdot(x+y) / 2 \in W
$$

We have shown that W is a linear subspace.
Another way to prove the claim is to show generally that affine sets are invariant under translations (we already sort of it did above) and to prove that a subset of V is a linear subspace if and only if it is affine and contains 0 . We leave it to the reader to try this path of solution.

It remains to show the uniqueness. Suppose $A=W+v=W^{\prime}+v^{\prime}$, where W, W^{\prime} are linear subspaces. Then

$$
W=W^{\prime}+\left(v^{\prime}-v\right)
$$

so in particular $\left(0 \in W^{\prime}!\right)$ it follows that $v^{\prime}-v \in W$. Moreover thus we obtain

$$
W^{\prime}=W-\left(v^{\prime}-v\right) \subset W
$$

since W is closed under substraction. By the symmetry also $W \subset W^{\prime}$.
3. a) Show that an affine/convex set A is closed under affine/closed combinations. In other words prove that if $a_{1}, \ldots, a_{n} \in A, r_{1}, \ldots, r_{n} \in \mathbb{R}, r_{1}+\ldots+r_{n}=$ 1 and in convex case also $r_{i} \geq 0$ for all $i=1, \ldots, n$, then

$$
r_{1} a_{1}+\ldots+r_{n} a_{n}=x \in A
$$

b) Suppose $A \subset V$. Prove that

$$
\begin{gathered}
\operatorname{aff}(A)=\left\{r_{1} a_{1}+\ldots+r_{n} a_{n} \mid a_{i} \in A, r_{1}+\ldots+r_{n}=1\right\} \\
\operatorname{conv}(A)=\left\{r_{1} a_{1}+\ldots+r_{n} a_{n} \mid a_{i} \in A, r_{i} \geq 0, r_{1}+\ldots+r_{n}=1\right\} .
\end{gathered}
$$

c) Suppose $f: C \rightarrow C^{\prime}$ is an affine mapping between convex sets. Prove that

$$
f\left(r_{1} a_{1}+\ldots+r_{n} a_{n}\right)=r_{1} f\left(a_{1}\right)+\ldots+r_{n} f\left(a_{n}\right),
$$

if $a_{1}, \ldots, a_{n} \in A, r_{1}, \ldots, r_{n} \in \mathbb{R}, r_{1}+\ldots+r_{n}=1$ and $r_{i} \geq 0$ for all $i=1, \ldots, n$.

Solution: a) We prove the claim in affine case, leaving the similar convex case to the reader. Suppose A is affine $a_{1}, \ldots, a_{n} \in A, r_{1}, \ldots, r_{n} \in \mathbb{R}, r_{1}+\ldots+r_{n}=$ 1. We prove by induction on n that $x=r_{1} a_{1}+\ldots+r_{n} a_{n} \in A$. In case $n=1$ there is nothing to prove. Suppose the claim is true for $n-1, n \geq 2$. Since $r_{1}+\ldots+r_{n}=1$ it follows that there is an index $i=1, \ldots, n$ such that $r_{i} \neq 1$. We may assume that $i=n$. Let $r=r_{1}+\ldots+r_{n-1}=1-r_{n} \neq 0$. Define $r_{i}^{\prime}=r_{i} / r$ for $i=1, \ldots, n-1$. Then $\sum_{i=1}^{n} r_{1}^{\prime}+\ldots+r_{n-1}^{\prime}=1$, hence by inductive assumption

$$
y=r_{1}^{\prime} x_{1}+\ldots+r_{n-1}^{\prime} x_{n-1} \in A .
$$

Since $x=\left(1-r_{n}\right) y+r_{n} x_{n}$, it follows that $x \in A$ by the very definition of affine set.
b) Suppose $A \subset B$, where B is affine. Then by a) B contains the set

$$
C=\left\{r_{1} a_{1}+\ldots+r_{n} a_{n} \mid a_{i} \in A, r_{1}+\ldots+r_{n}=1\right\}
$$

Clearly $A \subset C$. It remains to show that C is affine. This is an easy calculation and is skipped. The convex case is similar.
c) Induction on n. Again in case $n=1$ there is nothing to prove. Suppose the claim is true for $n-1, n \geq 2$. If $r_{n}=0$ or $r_{n}=1$ there is nothing to prove. In the opposite case define $r^{\prime}=1-r_{n}=r_{1}+\ldots+r_{n-1}$ and $r_{i}^{\prime}=r_{i} / r^{\prime}, i=1, \ldots, n-1$ as above. Let $y=r_{1}^{\prime} x_{1}+\ldots+r_{n-1}^{\prime} x_{n-1} \in A$. Then $x=\left(1-r_{n}\right) y+r_{n} x_{n}$. By the definition of affine mapping and inductive assumption we obtain

$$
\begin{gathered}
f(x)=\left(1-r_{n}\right) f(y)+r_{n} f\left(x_{n}\right)=r^{\prime}\left(r_{1}^{\prime} f\left(x_{1}\right)+\ldots+r_{n-1}^{\prime} f\left(x_{n-1}\right)\right)+r_{n} f\left(x_{n}\right)= \\
=r_{1} f\left(x_{1}\right)+\ldots+r_{n} f\left(x_{n}\right) .
\end{gathered}
$$

4. Prove that the set of vertices of a simplex is uniquely determined by the simplex. (Hint: show that a point is not a vertex if and only if it is a midpoint of an interval contained entirely in the simplex).

Solution: As the hint suggests we prove that the set of vertices of a simplex σ coincides with the set of all points of σ which are not midpoints of an interval contained entirely in the simplex. Since this condition depends only on the set σ itself, this implies the claim.

Let $\left\{v_{0}, \ldots, v_{n}\right\}$ be vertices of σ. Suppose first $x \in \sigma$ is not a vertex point. Then $x=t_{0} v_{0}+\ldots+t_{n} v_{n}$, where $t_{i}>0$ and $t_{j}>0$ for at least two distinct indices $i, j, i<j$. Let $\varepsilon>0$ be such that $t_{i}-\varepsilon>0, t_{j}-\varepsilon>0$. Define

$$
\begin{aligned}
& y=t_{0} v_{0}+t_{1} v_{1}+\ldots+\left(t_{i}+\varepsilon\right) v_{i}+\ldots+\left(t_{j}-\varepsilon\right) v_{j}+\ldots+t_{n} v_{n} \\
& Z=t_{0} v_{0}+t_{1} v_{1}+\ldots+\left(t_{i}-\varepsilon\right) v_{i}+\ldots+\left(t_{j}+\varepsilon\right) v_{j}+\ldots+t_{n} v_{n} .
\end{aligned}
$$

Then $y, z \in \sigma, y \neq z$ and $x=(y+z) / 2$.
Suppose conversely $x=(y+z) / 2$, where $y=t_{0} v_{0}+\ldots+t_{n} v_{n}, z=t_{0}^{\prime} v_{0}+$ $\ldots+t_{n}^{\prime} v_{n} \in \sigma, y \neq z$. Then there exists an index $i=0, \ldots, n$ such that
$t_{i} \neq t_{i}^{\prime}$, so in particular at least one of the numbers t_{i}, t_{i}^{\prime} is not equal 0 and consequently $\left(t_{i}+t_{i}^{\prime}\right) / 2>0$. Since

$$
\begin{aligned}
& t_{i}=1-\sum_{j \neq i} t_{j}, \\
& t_{i}^{\prime}=1-\sum_{j \neq i} t_{j}^{\prime},
\end{aligned}
$$

it follows that there must also be $j \neq i$ such that $t_{j} \neq t_{j}^{\prime}$ (otherwise $t_{i}=t_{i}^{\prime}$). As above we conclude that $\left(t_{j}+t_{j}^{\prime}\right) / 2>0$. It follows that the midpoint

$$
x=(y+z) / 2
$$

of the interval $[y, z]$ has at least two coefficients which differ from zero, hence cannot be a vertex of a simplex σ.
5. Let V be a finite-dimensional vector space.
a) Suppose $A \subset V$ and $\left\{v_{0}, \ldots, v_{n}\right\}$ is a maximal (with respect to inclusion) affinely independent subset of A. Prove that $\operatorname{aff}(A)=\operatorname{aff}\left(\left\{v_{0}, \ldots, v_{n}\right\}\right)$.
b) Suppose $C \subset V$ is convex and non-empty. Prove that C has a non-empty interior with respect to aff (C). (Hint: use a) and notice that the simplex spanned by $\left\{v_{0}, \ldots, v_{n}\right\}$ is a subset of C.)

Solution: a) Since $\operatorname{aff}(A)$ is an affine set that contains points v_{0}, \ldots, v_{n}, it follows that

$$
\operatorname{aff}\left(\left\{v_{0}, \ldots, v_{n}\right\}\right) \subset \operatorname{aff}(A)
$$

To prove the converse inclusion it is enough to prove that $A \subset \operatorname{aff}\left(\left\{v_{0}, \ldots, v_{n}\right\}\right)$. Let us make counter assumption that there is $x \in A$ such that $x \notin \operatorname{aff}\left(\left\{v_{0}, \ldots, v_{n}\right\}\right)$. We will prove that then the set $\left\{x, v_{0}, \ldots, v_{n}\right\}$ is affinely independent, which contradicts the maximality assumptions.
Suppose

$$
r_{0} v_{0}+\ldots+r_{n} v_{n}+r x=0, \text { where } r_{0}+\ldots+r_{n}+r=0
$$

We must show that $r_{0}=r_{1}=\ldots=r_{n}=r=0$. If $r=0$, we are done, since $\left\{v_{0}, \ldots, v_{n}\right\}$ is already known to be independent. Suppose $r \neq 0$. Then

$$
x=\left(-r_{0} / r\right) v_{0}+\ldots+\left(-r_{n} / r\right) v_{n}
$$

where $\left(-r_{0} / r\right)+\ldots+\left(-r_{n} / r\right)=1$. Hence the right side of the equation is affine combination, which shows that $x \in \operatorname{aff}\left(\left\{v_{0}, \ldots, v_{n}\right\}\right)$. This contradicts the choice of x.
b) Since V is finite-dimensional, C cannot contain arbitrary big affinely independent subsets. Hence there exists a maximal affinely independent subset $\left\{v_{0}, \ldots, v_{n}\right\}$ of C. By a)

$$
W=\operatorname{aff}(C)=\operatorname{aff}\left(\left\{v_{0}, \ldots, v_{n}\right\}\right)
$$

There exists unique affine mapping $g: W \rightarrow \mathbb{R}^{n}$ such that $f\left(v_{i}\right)=e_{i}, i=$ $0, \ldots, n$ (make sure that g exists!). Moreover such g is then a homeomorphism. Hence it is enough to show that $g(C)$ has interior points. But $g(C)$ is a convex
subset of \mathbb{R}^{n}, that contains points e_{0}, \ldots, e_{n}, hence also contains the standard n-simplex Δ_{n} that they span. The interior

$$
\text { int } \Delta_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \| x_{i}>0, \sum_{i=0}^{n} x_{i}<1, x_{i}>0 \text { for all } i\right\}
$$

of Δ_{n} is clearly a non-empty open subset of \mathbb{R}^{n}. Since it is a subset of $g(C)$ we are done.
6. Show that the standard n-simplices defined by

$$
\begin{aligned}
\Delta_{n} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i} \geq 0 \text { for all } i, \sum_{i=1}^{n} x_{i} \leq 1\right\} \\
\Delta_{n}^{\prime} & =\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid x_{i} \geq 0 \text { for all } i, \sum_{i=0}^{n} x_{i}=1\right\}
\end{aligned}
$$

are compact Hausdorff spaces (as subsets of Euclidean spaces).
Solution: We give the proof for Δ_{n}, the other one being similar. It is enough to show that Δ_{n} is closed and bounded in \mathbb{R}^{n}. It is closed as a finite intersection of sets

$$
\begin{gathered}
A_{i}=\left\{x \in \mathbb{R}^{n} \| x_{i} \geq 0\right\}, \\
B=\left\{x \in \mathbb{R}^{n} \| \sum_{i=1}^{n} x_{i} \leq 1\right\},
\end{gathered}
$$

which are easily seen to be closed as an inverse image of closed sets under some obvious continuous mappings $\mathbb{R}^{n} \rightarrow \mathbb{R}$.
Suppose $x \in \Delta_{n}$. Then $\left|x_{i}\right| \leq 1$ for all $i=1, \ldots, n$, hence

$$
|x|^{2}=\sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} 1=n .
$$

We conlude that Δ_{n} is also bounded.
7. Suppose $C \subset \mathbb{R}^{n}$ is a closed bounded convex set and 0 is the interior point of C. Let $f: \partial C \rightarrow S^{n-1}, f(x)=x /|x|$ and assume known that f is a homeomorphism.
Prove that $G: \bar{B}^{n} \rightarrow C$ defined by

$$
G(t)=\left\{\begin{array}{l}
|t| \cdot\left(f^{-1} \frac{t}{|t|}\right) \text { if } t \neq 0 \\
0, \text { if } t=0
\end{array}\right.
$$

is a homeomorphism.
Solution: Let us first prove that G is a bijection. First notice that $G(t)=0$ if and only if $t=0$. If $t, t^{\prime} \neq 0$ and $G(t)=G\left(t^{\prime}\right)$, then in particular

$$
f^{-1} \frac{t}{|t|} /\left|f^{-1} \frac{t}{|t|}\right|=G(t) /|G(t)|=G\left(t^{\prime}\right) /\left|G\left(t^{\prime}\right)\right|=f^{-1} \frac{t}{\left|t^{\prime}\right|} /\left|f^{-1} \frac{t}{,}\right| t^{\prime}| | .
$$

Letting $a=f^{-1} \frac{t}{|t|}, b=f^{-1} \frac{t}{\prime}\left|t^{\prime}\right|$ we see that $f(a)=f(b)$. Hence $\frac{t}{|t|}=f(a)=$ $\frac{t}{,}\left|t^{\prime}\right|=g(b)$. Since

$$
|t| \frac{t}{|t|}=G(t)=G\left(t^{\prime}\right)=\left|t^{\prime}\right| \frac{t}{,}\left|t^{\prime}\right|=\left|t^{\prime}\right| \frac{t}{|t|}
$$

and $\frac{t}{|t|} \neq 0$, this implies that $|t|=\left|t^{\prime}\right|$. Hence

$$
t=|t| \cdot(t /|t|)=\left|t^{\prime}\right| \cdot\left(t^{\prime} /\left|t^{\prime}\right|\right)=t^{\prime}
$$

