
Chapter 1

Simplicial stuff

1.1 Simplices

One of the main objectives of study in this course - the singular homology
theory - is defined in terms of the continuous images of simplices. Simplices
are also convenient for combinatorial representations of topological spaces
and concrete computations of the algebraic invariants (such as the singular
homology theory itself) in practise. This is why the first part of this course
is dedicated to a brief introduction to simplices and simplicial methods.

We start off by recalling the notion of a vector space (over reals). It is a
triple (V,+, ·), where V is a set, +: V × V → V is the operation of addition
of vectors and · : R × V → V is scalar multiplication. These operations are
required to satisfy the ” obvious ” rules, in particular (V,+) is a commutative
group, every vector space has a zero vector 0 and so on. The mapping
f : V → W between vector spaces is called linear if it preserves the addition
and scalar multiplication i.e.

f(v + v′) = f(v) + f(v′),

f(rv) = rf(v)

for all v, v′ ∈ V, r ∈ R.
In case you feel your knowledge of the basic properties of vector spaces and
linear mappings is rusty, you should recall your basic Linear Algebra.

The canonical set of examples of a vector space is provided by the n-
dimensional Euclidean space Rn, where n ∈ N. This space has a canon-
ical basis e1, . . . , en defined by

ei = (0, . . . , 0, 1, 0, . . . , 0),
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where 1 is the ith coordinate of ei and the rest of the coordinates are 0’s.
Every vector x ∈ Rn can be represented as a linear combination

x = r1e1 + . . .+ rnen,

where ri ∈ R in a unique way - in fact it is clear than this equation is true if
and only if x = (r1, . . . , rn). The space Rn also has a canonical topological
structure. We will also regard Rn as a subspace of Rn+1 via the identification

Rn ∋ (r1, . . . , rn) = (r1, . . . , rn, 0) ∈ Rn+1.

We will mainly be interested in finite dimensional vector spaces. If
{v1, . . . , vn} is a linear basis of a vector space V , then there is a unique
linear isomorphism f : V ∼= Rn such that f(vi) = ei, i = 1, . . . , n. We can
define a topology in V by requiring that f is a homeomorphism. It is easy
to see that this topology does not depend on the choice of the basis (Exer-
cise 1.1). In fact one can prove that this topology is a unique (Hausdorff)
topology on V which makes it a topological vector space, i.e. such that
the operations + and · are continuous, but we won’t be interested in this
result. We will always regard a given finite-dimensional vector space V as a
topological space equipped with this topology, which will be referred to as
the Euclidean topology on V .

Let V be an (arbitrary) vector space. A subspace A ⊂ V is called affine
if

rx+ (1− r)y ∈ A

for all x, y ∈ A, r ∈ R. Geometrically this means that for every two (different)
points of A the unique line that contains these points is contained in A. An
empty set and every singleton {x}, x ∈ V are thus trivially affine. In fact

Lemma 1.1.1. Suppose A ⊂ V is a non-empty affine subset. Then there is
v ∈ V and a linear subspace W ⊂ V such that A = x+W . Moreover W is
unique.

Proof. Exercise 1.2.

In other words affine sets are just translations of vector subspaces. In
case V is finite-dimensional, also W is, hence, by uniqueness of W we can
define affine dimension of A as dimA = dimW . For empty set one usually
defines dim ∅ = −1.
Hence 0-dimensional affine spaces are singletons i.e. points, 1-dimensional -
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lines, 2-dimensional - planes.

If we instead require a set to be closed only with respect to line segments
between two points we obtain a very useful notion of a convex set. To be
precise a subset A ⊂ V is called convex if

rx+ (1− r)y ∈ A

for all x, y ∈ A, r ∈ [0, 1]. An affine set is necessarily convex. Every convex
set is connected, even path-connected. A closed n-dimensional ball

B
n
= {x ∈ Rn | |x| ≤ 1}

is clearly not affine (why?), but it is convex (why?). The same is true for the
open ball

Bn = {x ∈ Rn | |x| < 1}.
A punctured ball {x ∈ Rn | 0 < |x| < 1} with origin removed is an example
of a connected set (for n > 1) which is not convex.
A mapping f : C → C ′ between convex sets is called affine if

f(rx+ (1− r)y) = rf(x) + (1− r)f(y)

for all x, y ∈ C, r ∈ [0, 1]. Also the term ” linear mapping ” is widely in use.

The intersection of an arbitrary collection of affine/convex sets is easily
seen to be affine/convex. So for every subset A ⊂ V there is the smallest
affine set aff(A) that contains A and the smallest convex set conv(A) that
contains A. The set aff(A) is called the affine hull of A and the set conv(A)
-the convex hull of A. Clearly

A ⊂ conv(A) ⊂ aff(A).

There is also a simple, explicit way to express both hulls in terms of the
points of A. Suppose a1, . . . , an ∈ V are arbitrary points. A vector

r1a1 + . . .+ rnan = x ∈ V

is called an affine combination of the points a1, . . . , an if r1 + . . . + rn = 1.
If also ri ≥ 0 for all i, it is called a convex combination of the points
a1, . . . , an. By induction on n it is easy to see that affine/convex set is
always closed under affine/convex combinations of its points (exercise 1.3a).
More generally we have
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Lemma 1.1.2. Suppose A ⊂ V . Then

aff(A) = {r1a1 + . . .+ rnan | ai ∈ A, r1 + . . .+ rn = 1},
conv(A) = {r1a1 + . . .+ rnan | ai ∈ A, ri ≥ 0, r1 + . . .+ rn = 1}.

Proof. Exercise 1.3b

If V is finite dimensional, then every affine subset is an affine hull of a
finite set of points - just translate it to a linear subspace, take a finite linear
basis of this subspace and translate it back. These points will generate the
affine set in question.
The situation is not that simple with convex sets. For example it is easy to
see that a closed ball B

n
cannot be a convex hull of a finite set if n ≥ 2 (can

you prove it?) and it is even easier to see the same for a corresponding open
ball Bn, even for n = 1. In fact a convex hull of a finite set is always closed,
even compact.

A convex hull of a finite set is usually called a linear (closed) cell. For
example a square, more generally n-cube is a linear cell, so is a triangle or a
pyramid with a triangle or square base. We won’t need a general notion of
a linear cell, so we will in fact restrict our attention to a useful special case
of the simplex. To define the notion of simplex we first need a notion of
affinely independent subset.

Consider a finite set {v1, . . . , vn} of points in V . We already know that
every point x of the set conv{v1, . . . , vn} can be written in the form

x = r1v1 + . . .+ rnvn,

where ri ≥ 0,
∑n

i=1 ri = 1. In general a representation of x in this form is
not unique. If it is always unique, we say that the set {v1, . . . , vn} is affinely
independent. To be more precise let us first prove the following

Lemma 1.1.3. Suppose v0, . . . , vn,∈ V . Then the following conditions are
equivalent.
a) v1 − v0, . . . , vi − v0, vn − v0 is a linearly independent set of vectors.
b) If

n∑

i=0

rivi = 0 and
n∑

i=0

ri = 0,

then ri = 0 for all i = 0, . . . , n.
c) If

n∑

i=0

rivi =

n∑

i=0

r′ivi and

n∑

i=0

ri =

n∑

i=0

r′i,
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then ri = r′i for all i.

d) Every point in the affine hull aff({v0, . . . , vn}) has a unique represen-
tation in the form

r0v0 + . . .+ rnvn,

where
∑n

i=0 ri = 1.
e) Every point in the convex hull conv({v0, . . . , vn}) has a unique represen-
tation in the form

r0v0 + . . .+ rnvn,

where
∑n

i=0 ri = 1 and ri ≥ 0 for all i.

Proof. a)⇐⇒ b) Condition a) means that

r1(v1 − v0) + r2(v2 − v0) + . . . rn(vn − v0) = 0

if and only if r1 = . . . = rn = 0. This is the same as

r1v1 + r2v2 + . . . rnvn − (r1 + . . .+ rn)v0 = 0

if and only if r1 = . . . = rn = 0. Letting r0 = −(r1 + . . . + rn) and notic-
ing that then r0+r1+. . .+rn = 0, we see that this is the same as condition b).

b)⇐⇒ c)Clear, since conditions of c) are equivalent to

n∑

i=0

(ri − r′i)vi = 0 and

n∑

i=0

(ri − r′i) = 0.

c)⇒ d) Condition d) is a special case of condition c) for
∑n

i=0 ri = 1.
d) ⇒ e) Clear.
e)⇒ b) Suppose

n∑

i=0

rivi = 0 and

n∑

i=0

ri = 0.

We need to prove that ri = 0 for all i = 0, . . . , n. Suppose they are not.
Then there are indices for which ri > 0 and indices for which ri < 0 (since∑n

i=0 ri = 0). We may assume that r0, . . . , rk ≥ 0, rk+1, . . . , rn < 0 for
0 ≤ k < n. Define r = r1 + . . .+ rk = −rk+1 − . . .− rn > 0. We have

r0v0 + . . .+ rkvk = (−rk+1)vk+1 + . . .+ (−rn)vn hence

r0
r
v0 + . . .+

rk
r
vk =

−rk+1

r
vk+1 + . . .+

−rn
r

vn.

Both sides are convex combinations of points v0, . . . , vn. Thus we obtain
different convex combinations for the same point, which is a contradiction
with e).
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Definition 1.1.4. If the set {v0, . . . , vn} satisfies one (hence all) conditions
of the previous lemma it is called affinely independent.

Definition 1.1.5. A convex hull of the affinely independent finite set {v0, . . . , vn}
is called the n-dimensional simplex with vertices v0, . . . , vn.

A simplex is usually denoted by the symbol σ. The set of its vertices
{v0, . . . , vn} is uniquely determined by the set σ itself (Exercise 1.4), so we
can talk about the vertices and the dimension of the simplex unambiguously.
Conversely the set of vertices {v0, . . . , vn} defines the simplex uniquely. The
fact that {v0, . . . , vn} are vertices of a simplex σ is also expressed by saying
that the points v0, . . . , vn span a simplex σ.

Notice that an n-dimensional simplex has n+ 1 vertices. By the Lemma
1.1.3 every point x of the simplex σ with vertices {v0, . . . , vn} can be written
in the form

x = r0v0 + r1v1 + . . .+ rnvn,

where ri ≥ 0 and
∑n

i=0 ri = 1 in a unique way.
If above ri > 0 for all i ∈ {0, . . . , n}, we say that x is an interior point
of the simplex. The set of all interior points is called the interior of the
simplex and will be denoted by int σ. The points which are not interior are
called boundary points. The set of boundary points is called the bound-
ary of the simplex, denoted by ∂σ.

0-simplex is a point, 1-simplex is a closed interval, 2-simplex is a triangle,
3-simplex is a tetrahedron.

b

b

bb

0-simplex 2-simplex1-simplex 3-simplex

Examples 1.1.6. The canonical example of the n-dimensional simplex is the
set

∆n = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i,

n∑

i=1

xi ≤ 1}.

To see that this is indeed a simplex, consider the set {0, e1, . . . , en} ⊂ Rn.
Lemma 1.1.3 easily implies that this set is affinely independent. It is straight-
forward to verify that ∆n is a convex hull of these points. For the notacional
convenience we will denote 0 = e0. Hence the simplex ∆n is spanned by the
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points e0, . . . , en.

Another, even simpler example is

∆′
n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0 for all i,

n∑

i=0

xi = 1}.

Here the set of vertices is exactly the standard basis of Rn+1 - the set {e0, . . . , en}.
It is easy to see that both ∆n and ∆′

n are compact Hausdorff spaces (Exercise
1.6).

An affine mapping f : σ → σ′, where σ and σ′ are both simplices is called
simplicial if for every vertex vi of σ the image f(vi) is a vertex of σ′.

Lemma 1.1.7. Suppose σ ⊂ V is an n-dimensional simplex with vertices
{v0, . . . , vn}, C ⊂ V ′ is a convex set and w0, . . . , wn ∈ C are arbitrary points.
Then there exists a unique affine mapping f : σ → C such that f(vi) = wi

for all i = 0, . . . , n.

Proof. Uniqueness is clear - since every point x ∈ σ has a unique represen-
tation

x = r0v0 + r1v1 + . . .+ rnvn

as a convex combination, we must have (exercise 1.3c)

f(x) = r0f(v0) + . . . rnf(vn) = r0w0 + . . .+ rnwn.

Conversely this formula defines a well-defined mapping (since C is convex)
and the verification that it is affine is left to the reader.

If V is a finite-dimensional vector space every simplex of V has a natural
(relative) topology as a subspace. In case V is not finite-dimensional it
does not have a priori any natural topology. However, the previous lemma
implies that for every n-simplex σ in V (finite-dimensional or not) there
exists a unique simplicial mapping f : ∆n → σ defined by f(ei) = vi for all
i = 0, . . . , n (where v0, . . . , vn are vertices of σ listed in some order). We have

f(x1, . . . , xn) = x0v0 + x1v1 + . . .+ xnvn,

where x0 = 1 − x1 − . . . − xn. Since both sets of vertices are affinely inde-
pendent, it follows that f is a bijection. In case V is finite-dimensional, i.e.
has a natural topology, f is clearly continuous, since operations of addition
and multiplication by real numbers are continuous in V . Since σ is Hausdorff
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and ∆n is compact, it follows that f is then a homeomorphism. Thus in the
general case we can define a topology on ∆ by requiring that f is a home-
omorphism. This topology will be referred to as the Euclidean topology
on σ. Notice that the homeomorphism f above depends on the choice of the
order of vertices. However, the next Proposition shows that the Euclidean
topology does not depend on the order of vertices.

Proposition 1.1.8. Suppose σ ⊂ V is an n-dimensional simplex with ver-
tices {v0, . . . , vn}. Then σ equipped with its Euclidean topology is a compact
Hausdorff space.
If C ⊂ V ′ is a convex set, where V ′ is finite-dimensional, then any affine
mapping f : σ → C is continuous.

In particular if σ′ is another n-simplex with vertices {v′0, . . . , v′n}, then
there exists a unique simplicial mapping f : σ → σ′ for which f(vi) = v′i
and this mapping is necessarily a homeomorphism. Hence two n-dimensional
simplices are homeomorphic as topological spaces and in particular Euclidean
topology does not depend on the chosen order of vertices.

Proof. Since σ equipped with the Euclidean topology is homeomorphic to
∆n, it is a compact Hausdorff space (Exercise 1.6). Via this homeomorphism
affine mapping f : ∆n → C is defined by the formula

f(x1, . . . , xn) = x1w1 + . . .+ xnwn + (1− x1 − . . .− xn)w0,

where wi = f(vi) ∈ C. This is certainly continuous with respect to the Eu-
clidean topology in V ′.

In particular, every simplicial mapping between two simplices is contin-
uous, hence every simplicial bijection between two n-simplices is a homeor-
phism (notice that the inverse of a simplicial bijection is also a simplicial
mapping). In particular if we consider σ with two different orders of vertices,
the identity mapping id: σ → σ is a homemorphism. Hence the Euclidean
topology does not depend on the order of vertices.

It is easy to see that an n-simplex is homeomorphic to the closed n-
dimensional ball B

n
, in fact this follows also from the more general Propo-

sition 1.1.10 we prove below. One of the questions that originally led to the
development of algebraic methods in topology was the question whether B

n

and B
m

are homeomorphic for n 6= m. Later we will prove that the answer
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is the intuitively expected ”no”.

Lemma 1.1.3 easily implies that any subset of an affinely independent set
is also affinely independent. Hence if σ is a simplex with vertices {v0, . . . , vn},
any subset of vertices {vi0 , . . . , vik} spans a simplex σ′, which is clearly a sub-
set of σ. Such a simplex is called a face of σ and we also denote this as
σ′ < σ. In particular n−1-dimensional faces of σ are simplices with vertices
{v0, . . . , v̂i, . . . , vn}, where v̂i symbolises that the element vi is omitted.

As we already observed above, a simplex defines the set of its vertices
{v0, . . . , vn} uniquely, but of course the ordering in which vertices are listed
can be arbitrary - any permutation defines the same simplex. For technical
reasons that will become apparent later it is in some contexts convenient to
fix the ordering of vertices. For example we would like to assign to every
n − 1-dimensional face {v0, . . . , v̂i, . . . , vn} the number i (the index, which
the omitted vertex has) and call it the ith face of the simplex. This is not
possible if we treat the set of vertices merely as a set.

Definition 1.1.9. An ordered simplex is a pair (σ,≤), where σ is a
simplex and ≤ is a linear order defined on a set of its vertices.

Since simplex is completely determined by the set of its vertices, ordered
n-simplex can be identified with (n + 1)-tuple (v0, . . . , vn) ∈ V n+1, where
v0 < v1 < . . . < vn.
An order of vertices of an ordered simplex σ defines by restriction an or-
der on any face of σ. Hence we can (and will) consider any face of an
ordered simplex as an ordered simplex as well. In an ordered n-simplex ev-
ery (n − 1)-dimensional face can be given an index - we call the face with
vertices (v0, . . . , v̂i, . . . , vn) the ith face of the ordered simplex σ. The ex-
pression ”face opposite to the vertex vi” is also used.

We conlude this section with an interesting topological fact about bounded
convex sets.

Proposition 1.1.10. Suppose C ⊂ V is a bounded closed convex subset,
where V is an n-dimensional vector space. Then C is homeomorphic to the

closed ball B
k
for −1 ≤ k ≤ n (where k = dimaff(C)) via a homeomorphism

which maps the boundary of C (with respect to aff C) to ∂Bk = Sk−1 and the
interior of C (with respect to aff C) to the open ball Bk.

Proof. If C is empty, claim is trivially true for k = −1. Hence we may assume
that C 6= ∅.
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According to Exercise 1.5 in this case C has an interior point with respect
to aff(C). By translating we may assume that C contains 0 as the interior
point with respect to Rk, where k = dimaff(C). Hence it is enough to prove
that if 0 is an interior point of C, then C is homeomorphic to B

n
via the

homeomorphism that maps interior to interior and boundary to boundary.
First we define a mapping f : ∂C → Sn−1 by f(x) = x/|x|. This is well-
defined and continuous, since 0 is not a boundary point of C. Since C is
bounded, for every y ∈ Sn−1 the connected set (half-line)

Ly = {ty | t ≥ 0} ⊂ Rn

interects both C (in 0) and its complement. Hence it also intersects the
boundary of C. This implies that f is surjective. To show that f is actually
bijective it is enough to prove that the half-line Ly intersects ∂C at precisely
one point. Let

t0 = sup{t | ty ∈ C}.
Then t0 > 0, since 0 is an interior point of C, and t0 is certainly a finite real
number, since C is bounded. Suppose x = t0y, then x ∈ ∂C. It is enough to
show that ty /∈ ∂C for t < t0 and ty /∈ C for t > t0. Define

W =
⋃

0≤t<1

(1− t)U + tx,

where U is an open neighbourhood of 0 contained in C. Then W is open in
V and is a subset of C, since C is convex. Moreover the half-open interval
[0, x[ is contained in W . Hence tx ∈ intC and consequently not a boundary
point for all t < 1. This proves that t0y /∈ ∂C for t0 < t.

Next consider the case t > t0. By the definition of supremum there ex-
ists t′ ∈]t0, t[ such that x′ = t′y /∈ C. Suppose ty ∈ C. Then by convexity
t′y ∈ C, since it belongs to the closed interval [x, ty]. This is a contradiction,
so ty /∈ C.

We have shown that f is a continuous bijection. Since both ∂C and Sn−1

are compact and Hausdorff spaces, f is a homeomorphism.
The considerations above also show that ty ∈ intC for all t ∈ [0, t0[.

To complete the proof we must extend this homeomorphism to the interior
of C. This is now just scaling - one maps the interval [0, x] to the interval
[0, x/|x|] in a linear manner for every boundary point x. It is actually easier
to do it the other way around - define G : B

n → C by

G(t) = |t| · f−1
( t

|t|
)
if t 6= 0
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and G(0) = 0. We leave the verification that G is a homeomorphism to the
reader as an exercise(1.7).

The last part of the claim of the previous proposition is a bit redun-

dant - every homeomorphism f : B
k → B

k
must map interior to interior

and boundary to boundary. This fact (related to the famous ”Invariance of
Domain” theorem) seems obvious, but is not easy to prove, just as the fact
that Euclidean spaces of different dimension are non-homeomorphic. Both
are consequences of the invariance of domain theorem, which we will prove
in this course.

Since any n-simplex σ is a closed convex set that has interior points
(namely the interior of a simplex, as defined above) with respect to the n-
dimensional affine set aff σ we obtain the following result.

Corollary 1.1.11. Suppose σ is an n-simplex. Then there exists a homeo-
morphism σ → B

n
that maps int σ to Bn and ∂σ to Sn−1.

1.2 Simplicial complexes

One of the reasons simplices were invented and are useful, is that many fa-
miliar spaces/geometric figures, although not simplices themselves, can be
built out of simplices by ”gluing ” them together in a ”regular” manner. For
example a square is not a simplex (can you come up with an easy argument
why not?) but if you ”cut” it along the diagonal you will easily see that it
is obtained from two triangles i.e. 2-simplices which have a common side -
namely the diagonal itself. This is illustrated in the picture below - U and
V are right-angled triangles with one common side.

U

V

Of course a square is homeomorphic to a simplex anyway, since it is con-
vex, so there may seem little point in representing it in this way from the
topologist point of view, although we will see a bit later, when we talk about
∆-complexes, that a little generalization of this idea might be a fruitful way
of representing some less ”simple” spaces, such as the Klein’s bottle or the
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Mobius band.

As a little more interesting example consider the boundary of a 2-simplex
i.e. a triangle with vertices {v0, v1, v2} - see the picture below. Now this
boundary is not homeomorphic to a simplex (although we can’t quite prove
it yet, we will later and it seems very believable anyway). But still, just as
with the square above, one can think of this boundary as the union of three
1-simplices (a, b and c in the picture) such that two of them always intersect
at a vertex (and every vertex is a common face of precisely two 1-simplices).

v0

v1

v2

a b

c
The spaces obtained in this way are called polyhedrons. Since every

simplex is determined by a finite set of its vertices, in this fashion we obtain
a purely combinatorical ” discrete ” representation of a topological space in
question - sort of like a ” skeleton ” of the space. Let us now switch to formal
definitions.

Definition 1.2.1. Suppose V is a vector space (not necessarily finite-dimensional).
A collection K = {σi}i∈I of simplices in V is called a (geometric) simpli-
cial complex if the following conditions are satisfied:
1) For every simplex σ in K its every face also belongs to K.
2) For every pair σ, σ′ of simplices in K their intersection is either empty or
a common face of σ and σ′.

A useful alternative definition of a simplicial complex is formulated in the
following lemma.

Lemma 1.2.2. Suppose V is a vector space. A collection K = {σi}i∈I of
simplices in V is a simplicial complex if and only if
1) For every simplex σ in K its every face also belongs to K.
2’) For every x ∈ ⋃

i∈I σi there is a unique i ∈ I such that x is an interior
point of the simplex σi.

Proof. Exercise 1.8
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A subset L of K which is a simplicial complex on its own is called a
simplicial subcomplex of K. Notice that for any subset of K the condi-
tion 2)’ in the Lemma above is satisfied automatically, so for L ⊂ K to be
a subcomplex it is enough that it satisfies condition 1) i.e. is closed under
faces of its simplices.
If L is a subcomplex of K we call the pair (K,L) a pair of simplicial com-
plexes.

The underlying set

|K| =
⋃

i∈I

σi ⊂ V

is called a polyhedron of the complex K. If V is finite-dimensional this
set, of course, has a natural Euclidean topology inherited from the standard
topology of V , but this is not necessarily the topology we are interested in. If
V is not finite-dimensional we don’t have any canonical topology in V , that
might define a relative topology on this polyhedron, but in fact we don’t need
one. There is a standard way to define a topology on any polyhedron.

We start off by noticing that our polyhedron is a union of simplices any-
way, and every simplex has its standard Euclidean topology. All we need to
do is to ”glue together” this topologies to obtain a topology on |K|. For this
we need the following general topological result.

Proposition 1.2.3. Suppose X is a set and (Xi)i∈I is a collection of its
subsets and assume every subset Xi is given a topology τi. Suppose also that
1) For all i, j ∈ I the relative topologies induced on Xi ∩ Xj by τi and τj
coincide.
2) For all i, j ∈ I the set Xi ∩Xj is closed in Xi with respect to the relative
topology induced by τi.
Then there exists a unique topology τ on X such that a subset A ⊂ X is
open (closed) in (X, τ) if and only if A ∩ Xi is open (closed) in (Xi, τi) for
all i ∈ I. Moreover the relative topology induced by τ on Xi coincides with
τi and Xi is closed in X for every i ∈ I.

Proof. A topology τ described by the condition A ⊂ X is open(closed) in
(X, τ) if and only if A∩Xi is open(closed) in (Xi, τi) always exists and unique
- in fact it is the topology induced by the inclusions Xi →֒ X , i ∈ I.
All we need to prove is that this topology satisfies the other conditions. First
of all by condition 2) we see that Xi is closed in X by the very definition of
induced topology τ .
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Suppose A ⊂ Xi is closed with respect to τi. For every j ∈ J the set
A∩Xj is closed in Xi ∩Xj with respect to the relative topology induced by
τi, hence also closed in Xi ∩Xj with respect to the relative topology induced
by τj , by 1). Since Xi ∩ Xj is closed in (Xj , τj), it follows that A ∩ Xj is
closed in (Xj , τj). Hence by the defintiion A is closed in (X, τ). In particular
A is closed in the relative topology of Xi induced by τ .

Conversely suppose A ⊂ Xi is closed in Xi with respect to the relative
topology induced by τ . Since Xi is closed in (X, τ) it follows that A is
also closed in (X, τ). By the definition of τ this means that in particular
A = A ∩Xi is closed in (X, τi).

The topology on the set X is called coherent with a family (Xi)i∈I of
subsets of X if a subset A ⊂ X is open (closed) in X if and only if A∩Xi is
open (closed) in Xi for every i ∈ I(with respect to relative topology).

Returning to our polyhedron, it is easy to see that the collection of sim-
plices σ ∈ K equipped with their Euclidean topologies satisfies the conditions
of Proposition 1.2.3 for the set |K|. Namely the intersection of two simplices
σ, σ′ is either empty or a common face. Clearly the Euclidean topologies
induce on the intersection σ ∩ σ′ the Euclidean topology of this simplex,
which is closed in both σ and σ′. Hence Proposition 1.2.3 implies that there
is a unique topology on |K| which is coherent with Euclidean topologies of
all simplices σ ∈ K and induces the Euclidean topology on every simplex.
Moreover every simplex is then closed in |K|.
From now on when we talk about a polyhedron of a simplicial complex, we
assume it is equipped with this topology, which we will call weak topology.
Notice that even if V is finite-dimensional, in which case |K| has a relative
topology as its subset, this topology is NOT necessarily the same as the weak
topology defined above.

Example 1.2.4. Consider the subset {0} ∪ {1/n | n ∈ N+} ⊂ R. We can
think of this set as a simplicial complex consisting of 0-simplices, which are
just points. The weak topology on this set is simply the discrete topology.
However in the relative topology as a subset of R this set is not descrete,
since 0 is a limit point of the sequence {1/n | n ∈ N+}.
As a more extreme, not interesting trivial example one could even take as a
set of 0-simplexes the whole vector space Rn, thus obtaining 0-dimensional
polyhedron with descrete topology, whose underlying set is Rn.

We will, however, be mainly interested in finite simplicial complexes, for
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which no such problem can arise.

Proposition 1.2.5. Suppose K is a simplicial complex in a vector space V .
Then |K| is compact with respect to the weak topology if and only if K is
finite.
If K is finite and V is finite dimensional, then the weak topology in |K|
coincides with the relative topology of the subspace of V .

Proof. Every simplex is compact. Hence a finite simplicial complex is com-
pact, as a finite union of compact spaces.
Conversely suppose K is not finite. For every σ ∈ K choose a point xσ ∈
int σ. By Lemma 1.2.2 xσ 6= x′

σ if σ 6= σ′. Hence the set

C = {xσ | σ ∈ K}

is infinite. Let A be an arbitrary subset of C. Now every simplex of K
intersects A in a finite set (at most one point of C is in the interior of every
face of the simplex), which is certainly closed in this simplex. Hence by the
definition of the weak topology A is closed in |K|. Hence in particular C is
closed in |K| and its every subset is closed, so it has a discrete topology. If
|K| was compact, also C would be compact. But a compact discrete space
is always finite. Hence we obtain the contradiction.

For the second claim it is enough to notice the following. Suppose X
is a topological space which is a finite union of closed subsets A1, . . . , An.
Then the topology of X is coherent with the family (Ai). This is proved in
Topology II (or prove it yourself, it is very easy).

If L is a subcomplex of K, the space |L| has the Euclidean topology, as
a polyhedron of a simplicial complex on its own, and the relative topology
induced from the Euclidean topology of K. Both topologies coincide. More-
over |L| is closed in |K| (Exercise 2.10).

A triangulation of a topological space X is a pair (K, f) where K is
a simplicial complex and f : X → |K| is a homeomorphism. A space that
has a triangulation is called a polyhedron. A pair (X, Y ) of topological
spaces (i.e. Y is a subspace ofX) is called a polyhedron pair if there exists
a triangulation f : X → |K| and a subcomplex L of K such that f−1|L| = Y .

Examples 1.2.6. 1 As already noted in the beginning of this section, a
square can be represented as a polyhedron of a simplicial complex that
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contains 2 2-simplices with one common side and all their faces. For in-
stance if the vertices of the square are the points (0, 0), (0, 1), (1, 0), (1, 1)
in the plane R2, then as a suitable simplicial complex we can take a com-
plex consisting of 2-simplices {(0, 0), (0, 1), (1, 0)}, {(0, 1), (1, 0), (1, 1)},
1-simplices {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(1, 0), (0, 1)}, {(1, 1), (0, 1)},
{(1, 1), (1, 0)} and 0-simplices {(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}.

Of course there are other ways to triangulate a square - we could use
another diagonal to subdivide it into 2 triangles or both diagonals to
subdivide it into a polyhedron of a simplicial complex with 4 2-simplices
(see the picture).

So we see that there are many ways to triangulate a given polyhedron.

2) Suppose σ is n-dimensional simplex in a vector space V . Then its
faces define a simplicial complex, which we also denote by K(σ) and
its proper faces, i.e. all of its faces except σ itself, define a simplicial
complex which is denoted K(∂σ). Clearly K(∂σ) is a subcomplex of
K(σ). Of course |K(σ)| = σ and |K(∂σ)| = ∂σ. In particular we see
that Sn−1 is a polyhedron and the pair (B

n
, Sn−1) is a polyhedron pair

(by Proposition 1.1.10).

3) Again we can subdivide σ to obtain the other, less trivial representations
of σ as a polyhedron - for one example see the picture below.

b

Here K has three 2-simplices and their faces. The simplicial complex
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is different from K(σ) but the underlying polyhedron is the same.

4) Suppose K is a simplicial complex and n ∈ N. The collection of all
simplices of K with dimension ≤ n is clearly a subcomplex of K, which
we denote Kn and call the nth skeleton of K.
The elements of |K0| are called the vertices of the simplicial complex
K.

The simplicial complex K is called finite-dimensional if K = Kn for
some n ∈ N. The smallest n that satisfies this condition is then called
the dimension of K. If K is not finite-dimensional, we say that it is
infinite dimensional.

If K is 0-dimensional, the weak topology of |K| is the discrete topology.

According to Lemma 1.2.2 every point x ∈ |K| is an interior point of
the unique simplex σ ∈ K. This simplex is called the carrier of x and is
denoted by car(x).
The star of x is defined to be the set

St(x) =
⋃

{int σ | x ∈ σ}.

Lemma 1.2.7. Suppose x ∈ |K| and the set of vertices of car(x) is {v0, . . . , vn}.
Then

a) St(x) is an open neighbourhood of x in |K|.

b)

St(x) =
⋃

{int σ | car(x) < σ} =
⋃

{int σ | v0, . . . , vn are vertices of σ}.

.

c)

St(x) =
n⋂

i=0

St(vi).

Proof. Exercise 2.11

One of the reasons homology theory works as well as it does is that simpli-
cial complexes can be subdivided into simplicial complexes with ” arbitrary
small ” simplices.
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Definition 1.2.8. A simplicial complex K ′ is a subdivision of a simplicial
complex K if
1) Every simplex of K ′ is a subset of some simplex of K.
2) Every simplex of K is a finite union of some simplices of K ′.

If K ′ is a subdivision of K it follows straight from the definition that
|K ′| = |K|. Moreover the Euclidean topology induced by K ′ and K on the
set |K| = |K ′| coinside (Exercise 2.12).

The important canonical subdivision of a given simplicial complex is the
so-called barycentric division. It is constructed as follows.
Suppose K is a simplicial complex. Let σ ∈ K be an n-simplex with vertices
{v0, . . . , vn}. The point

b = b(σ) =
1

n+ 1
(v0 + v1 + . . .+ vn) ∈ σ

is called a barycentre of the simplex σ.

Lemma 1.2.9. Suppose σ0 < σ1 < . . . < σn is a linearly ordered finite chain
of simplices (where σn ∈ K), where σi is a face of σj for i < j.
Then the set of barycentres {b(σ0), b(σ1), . . . , b(σn)} is affinely independent,
hence defines an n-simplex, which is a subset of σn.

Proof. We prove the claim by induction on n. For n = 0 the claim is clear.
Suppose

r0b(σ0) + r1b(σ1) + . . .+ rnb(σn) = 0,

where r0 + . . .+ rn = 0. It is enough to prove that rn = 0.

Let {v0, . . . , vm} be the set of vertices of σn. We may assume that σn−1

(hence σi for all i < n) is a face of a simplex spanned by {v0, . . . , vm−1} Now
every barycentre b(σi) can be written as a convex combination

b(σi) = ai0v0 + ai1v1 + aimvm,

where
∑m

j=0 a
i
j = 1 and aim = 0 for i < n. Substituting this expression in the

equation above gives us an equation

r′0v0 + . . .+ r′mvm = 0, where

r′j =

n∑

i=0

ria
i
j .
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Simple computation implies that

m∑

j=0

r′j =

m∑

j=0

n∑

i=0

ria
i
j =

n∑

i=0

ri

m∑

j=0

aij =

n∑

i=0

ri = 0.

Since {v0, . . . , vm} is affinely independent, this implies that r′j = 0 for all
j = 0, . . . , m, in particular r′m = 0. But on the other hand

r′m =
rn

n+ 1
.

Hence rn = 0 and we are done.

Proposition 1.2.10. Suppose K is a simplicial complex. Define K ′ as the
collection of simplices conv({b(σ0), b(σ1), . . . , b(σn)}), where σ0 < σ1 < . . . <
σn ∈ K. Then K ′ is a simplicial complex and it is a subdivision of K.

Proof. Clearly
conv({b(σ0), b(σ1), . . . , b(σn)}) ⊂ σn.

Let σ ∈ K be arbitrary n-simplex with vertices {v0, . . . , vn}. Let x ∈ σ. By
the proof of Proposition 1.1.10 we know that x is either a barycentre or there
is a unique y ∈ ∂σ such that x is on the interval between barycentre (interior
zero point in the proof of 1.1.10) and y. In other words there are unique
y ∈ ∂σ and r ∈]0, 1] such that

x = rb(σ) + (1− r)y.

Now y is a point of a proper face σ′ < σ. Assume, by induction (on the
dimension n), that every face σ′ of σ can be written as a finite union of all
the possible simplices of K ′ of the form

conv({b(σ0), b(σ1), . . . , b(σn)}),

where σn is a face of σ′. By the equation

x = rb(σ) + (1− r)y

we get the similar result for σ. The only exception - the barycentre itself-
corresponds then to the 0-simplex {b(σ)}.
Since the claim is clear for n = 0 (every vertex of K is a vertex of K ′), we
obtain by induction that every simplex of K is a finite union of the simplices
of K ′.
It remains to show thatK ′ is indeed a simplicial complex. Since it is obviously
closed under faces, lemma 1.2.2 implies that it is enough to prove that every
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point of |K ′| = |K| is an interior point for the unique simplex σ′ ∈ K ′.
Hence suppose x ∈ |K| is an interior point of a simplex

conv({b(σ0), b(σ1), . . . , b(σn)})

i.e.

x =
n∑

i=0

aib(σi),

where
∑n

i=0 ai = 1, ai > 0. This implies in particular that x ∈ int σn, so σn

is uniquely determined by x. Letting a =
∑n−1

i=0 ai = 1−an we can write this
as

x = (1− an)y + anb(σn),

where y is a boundary point of σn, belonging to σn−1. On the other hand we
already know that this expression is unique, if x 6= b(σn). By induction we
may assume that y is an interior point of the unique simplex in K ′, which
now will have to be

conv({b(σ0), b(σ1), . . . , b(σn−1)}).

This implies that
conv({b(σ0), b(σ1), . . . , b(σn)})

is uniquely determined by x, i.e. is the only possible simplex of K ′, whose
interior contains x.
In case x IS a barycentre, y above is not unique, but an = 1, so this shows
that x can only belong to the interior of the 0-simplex {b(σ)}.
The proposition is proved.

Definition 1.2.11. Suppose K is a simplicial complex. A simplicial com-
plex K ′ defined in the previous proposition is called the first barycentric
division of K.

The following picture illustrates the barycentric subdivision of 1 and 2
simplices as well as the part of the barycentric subdivision of a 3 simplex,
where only subdivision of two front faces and lines from the barycentre to the
visible vertices are shown. The barycentre of the whole simplex is denoted b.

b

b
b

b

b

bb

b

b b

b

bb

b

b

b

b

b

b b
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The construction can be iterated - suppose K ′ is a first barycentric divi-
sion of K and let K ′′ be a first barycentric division of K ′. Then K ′′ is called
the second barycentric division of K.
This can be continued by induction. Suppose (n− 1):th barycentric division
K(n−1) ofK is defined. We define the n-th barycentric divisionK(n) to be
the first barycentric division of K(n−1). Hence the notation K(1) will be used
for the first barycentric division. For convinience we also define K(0) = K.

The following picture illustrates the second barycentric subdivision of a
1-simplex and a 2-simplex. You can see, how simplices are getting smaller
with each subdivision.

b

b
b

b

b
b

Barycentric divisions are most useful for finite simplicial complexes. To
formulate and prove next results we need the concept of the diameter of a
simplex, hence the concept of the linear metric on a simplex. Of course every
finite simplicial complex can be considered a simplicial complex in a finite-
dimensional space V , which can be identified with Rm, and hence given a
linear metric. This metric will of course depend on the chosen identification
V = Rm. For our purposes it is enough to consider simplicial complex which
already are complexes in some Rm, hence have a natural metric.

Lemma 1.2.12. Suppose σ is a simplex in Rm, with vertices {v0, . . . , vn}.
Then

diam σ = max{|vi − vj |},

where | · | is a standard norm on Rm.

Proof. Exercise 1.13)
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Lemma 1.2.13. Suppose K is a finite simplicial complex in Rm. Let σ′ be a
simplex in a first barycentric divisionK ′, with vertices {b(σ0), b(σ1), . . . , b(σn)},
where σ0 < . . . < σn = σ ∈ K. Then

diam σ′ ≤ n

n+ 1
diam σ

Proof. Exercise 1.13b)

For a finite simplicial complex K ⊂ Rm we define its mesh by

meshK = max{diam σ | σ ∈ K}.

Corollary 1.2.14. Suppose K is a finite simplicial complex in Rm. Then
for every ε > 0 there exists n ∈ N such that

meshK(n) < ε.

Proof. Let m be a maximal dimension of a simplex in K. Since k
k+1

< 1 for
every k ≤ m, there exists n ∈ N such that

( k

k + 1

)n

meshK < ε.

Iterration of the result of the previous lemma shows that then

meshKn < ε.

Now we can finally prove the important result that shows that a compact
polyhedron has ” arbitrary fine ” triangulations.
Suppose U is an open covering of |K|. Recall that this means that every
U ∈ U is an open set of |K| and

|K| =
⋃

{U ∈ U}.

We say that K is finer than U if for every vertex v ∈ K there is U ∈ U such
that St(v) ⊂ U . In other words the open covering

{St(v) | v is a vertex of K}

is finer (is a refinement) than the covering U .
More generally a triangulation (K, f) of a polyhedron X is said to be finer
than the open covering U of X , if the covering

{f−1St(v) | v is a vertex of K}
is a refinement of U .
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Proposition 1.2.15. Suppose K is a finite simplicial complex and U is an
open covering of |K|. Then there exists n ∈ N such that n-th barycentric
division K(n) is finer then U .

Proof. Since K is finite, the affine subspace that vertices of its simplices
generate is final-dimensional, so we might as well assume that K is a subset
of final-dimensional vector space V . By inducing metric on V via some linear
homeomorphism V ∼= Rm we might actually assume that K is a simplicial
complex in Rm for some m ∈ N.
Since |K| is compact (lemma 1.2.5), there is ε > 0 such that any subset A ⊂
|K| with diamA < ε is contained in some U ∈ U - this is so called Lebesgue
number for the covering U (in case you don’t remember - its existance is
proved in the course Topology I).
According to the lemma 1.2.14 there exists n ∈ N such that

meshK(n) < ε/2.

Now let v be a vertex of K(n). Suppose x, y ∈ St(v). Then there exist
simplices σ, σ′ ∈ K(n) such that x ∈ int σ, y ∈ int σ′ and v ∈ σ ∩ σ′. The
application of the triangle inequality then shows that

|x− y| ≤ |x− v|+ |y − v| < 2meshK(n) < ε.

Hence St(v) ⊂ U for some U ∈ U and the proposition is proved.

Corollary 1.2.16. Suppose X is a compact polyhedron and U an open cov-
ering of X. Then there exists a triangulation of X which is finer then U .

Proof. Obvious from the previous proposition.

Previous corollary is actually true for arbitary polyhedron, but the proof
is more difficult. In general case the barycentric subdivision cannot be used
.

As an application we will prove approximation theorem for continuous
mappings between polyhedra.
Suppose K,K ′ are simplicial complexes and g : |K| → |K ′| is a mapping.
Mapping g is called simplicial if for every σ ∈ K there exists σ′ ∈ K ′

such that g(σ) ⊂ σ′ and g|σ : σ → σ′ is simplicial. Clearly simplicial map-
ping is completely determined by the images g(v) of vertices of K, which
are also vertices of K ′. If {v0, . . . , vn} are vertices of a simplex in K, then
{g(v0), . . . , g(vn)} span a vertex of K ′.
Conversely suppose g is a mapping defined on the set of vertices of K which
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satisfies condition
1)If {v0, . . . , vn} are vertices of a simplex in K, then {g(v0), . . . , g(vn)} are
vertices of a simplex in K ′.
Then g can be extended to the unique simplicial mapping g : |K| → |K ′|
(exercise 1.15).

Every simplicial mapping is continuous with respect to weak topologies
(exercise 1.9b).

Definition 1.2.17. Suppose K,K ′ are simplicial complexes and f : K → K ′

is a continuous mapping. A simplicial mapping g : |K| → |K ′| is called a
simplicial approximation of f if
f(x) ∈ int σ implies g(x) ∈ σ for every x ∈ |K|.

One of the main reasons simplicial approximations are considered is the
following. Recall that the mappings f, g : X → Y (where X and Y are
topological spaces) are called homotopic (written as f ≃ g) if there exists
continuous F : X × I → Y such that F (x, 0) = f(x) and F (x, 1) = g(x).
Such an F is called a homotopy from f to g.
If A ⊂ X is such that F (x, t) = f(x) = g(x) for all t ∈ I, the mapping F is
called a homotopy relative to A and f and g are said to be homotopic
relative to A (written as f ≃ g rel A).

Lemma 1.2.18. Suppose simplicial mapping g : |K| → |K ′| is a simplicial
approximation to f : |K| → |K ′|. Denote A = {x ∈ |K| | f(x) = g(x)}.
Then f and g are homotopic relative to A.

Proof. We will consider only the case of finite complexes.
By the definition of the approximating mapping f(x) and g(x) belong to the
same simplex σ of K ′ for every x ∈ |K|. Hence the line segment between
f(x) and g(x) lies interely within |K ′|, so the mapping F : |K| → I,

F (x, t) = tf(x) + (1− t)g(x)

is well-defined. It is clearly continuous, since operations of addition and scalar
multiplication are continuous in finite-dimensional spaces, whose topology in-
duces weak topology on finite complexes (lemma 1.2.5).

In general case the continuity of F is not so simple to show and requires
the proof that the product topology of |K| × I is coherent with the family
{σ × I}σ∈K . This is suprisingly untrivial. Since we won’t need the general
case anyway, we skip the proof of it.
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The following is the useful characterization of a simplicial approximation.
Notice that in this formulation the mapping g defined on a set of vertices
of K is not assumed to be simplicial apriori, which can be convinient in
practice.

Lemma 1.2.19. Suppose f : |K| → |K ′| is continuous and a mapping g
defined on the set of vertices of K with values in the set of vertices of K ′

is given. Then g can be extended to a simplicial approximation of f (in a
unique way) if and only if

f(St(v)) ⊂ St(g(v))

for every vertex v ∈ K.

Proof. The proof that simplicial approximation satisfies the condition is left
as an exercise (1.16).

Suppose g satisfies the condition. Let us first prove that g can be extended
to a simplicial mapping. Suppose {v0, . . . , vn} is a set of vertices of a simplex
σ ∈ K. Let b be a barycentre of σ. Then b ∈ St(vi) for all i = 0, . . . , n.
It follows that c = f(b) ∈ ∩n

i=0 St(g(vi)). Let σ′ be a unique simplex that
contains c as an interior point. By the definition of star and the fact that
interiors of different simplices do not intersect it follows that g(vi) is a vertex
of σ′ for every i = 0, . . . , n. In particular {g(v0), . . . , g(vn)} are vertices of a
simplex in K ′ (a face of σ′).
Hence g can be extended to a simplicial mapping g : |K| → |K ′| in a unique
way. It remains to show that it is a simplicial approximation. Suppose
f(x) ∈ int σ ∈ K ′. Let {v0, . . . , vn} be the vertices of a unique simplex of
K, that contains x as an interior point. Then x ∈ St(vi) for all i = 0, . . .,
so f(x) ∈ St(g(vi)). As above we see that g(vi) is a vertex of σ for every
i = 0, . . . , n. Since g is simplicial, it follows that g(x) is a convex combination
of g(vi), hence belongs to σ as well. The claim is proved.

Now we can state and prove the final main result of this section.

Proposition 1.2.20. Suppose K is a finite simplicial complex, K ′ is a sim-
plicial complex and f : |K| → |K ′| is continuous. Then there exists n ∈ N
such that f has a simplicial approximation g : |K(n)| → |L|.

Proof. Consider the open covering

U = {f−1(St(v′) | v′ is a vertex of K ′}
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of |K|. By the proposition 1.2.15 there exists n ∈ N such that K(n) is finer
than the covering U . This means that for every vertex v of K(n) there exists
a vertex g(v) of K ′ such that

f(St(v)) ⊂ St(g(v)).

By the previous lemma g can be extended to a simplicial approximation of
f .

It is a well-known fact (see Topology II or proof yourself) that the ho-
motopy relation f ≃ g is an equivalence relation on the set of all continuous
mappings X → Y (X, Y fixed topological spaces). Corresponding quotient
set will be denoted [X, Y ].

Corollary 1.2.21. Suppose X and Y are compact polyhedra. Then the set
[X, Y ] is countable.

Proof. Choose finite simplicial complexes K,K ′ such that X = |K|, Y = |K ′|
(up to a homeomorphism). Let f : X → Y be an arbitrary continuous map-
ping. By the proposition ?? there exists n ∈ N such that f has a simplicial
approximation g : |Kn| → |K ′|. By the lemma 1.2.18 g is homotopic to f .
For every fixed n ∈ N there exists only a finite amount of simplicial mappings
g : |K(n)| → |K ′|, since such a mapping is completely determined by the way
it maps vertices to vertices, and there is only a finite amount of vertices in
both complexes.
Since the countable union of finite sets is countable, the claim follows.

Examples 1.2.22. 1. Later we will prove that [Sn, Sn] is infinitely countable
for n > 0. Fix a triangulation of Sn = |K|. For every m ∈ N K(m) and K
are finite complexes, so there exists only a finite amount of possible simplicial
mappings g : |K(m)| → |K|.
Since [|K|, |K|] is infinite, for every fixed m ∈ N there must be a con-
tinous f : |K(m)| → |K| which does not have a simplicial approximation
g : |K(m)| → |K|. Hence it is necessary to consider arbitrary m ∈ N in
the proposition1.2.20.

2. Consider the boundary of the equilateral triangle σ as a 2-simplex with
vertices v0, v2, v4. For odd i = 1, . . . 5 denote by vi the barycentre of the 1-
simplex [vi−1, vi+1], where we identify v6 = v0.
Let K = K(∂σ). Let f : |K| → |K| be the unique simplicial mapping
f : |K ′| → |K ′| defined by f(vi) = vi+1. f can be thought of as a 60 ◦ ”rota-
tion” (under the canonical projection homeomorphism to the sphere).
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Now as a mapping f : |K| → |K| f does not have a simplicial approxima-
tion. As a mapping f : |K ′| → |K| f has exactly 8 simplicial appoximations -
under any approximation g barycentres vi (odd i) must be mapped to vi+1 and
for even vi there are exactly two choices for g(vi) - vi or vi+1. The verification
of these claims is left as an exercise (1.17).

Using simplicial approximation-theorem one can easily prove the following
interesting topological result.

Theorem 1.2.23. Suppose m < n and f : Sm → Sn is a continuous map-
ping. Then f is homotopically trivial i.e. homotopic to a constant map-
ping.

Proof. Exercise 1.18.

1.3 ∆-complexes

Simplicial complexes provide a classical way to study polyhedrons, which
is useful both theoretically as well as in practic. However in some circum-
stances the simplicial approach is ”too regular” and rigid. Many spaces that
occur in practice can be triangulated, but the triangulation might be too
complicated for practical purposes. For example a projective space RP 2 is a
polyhedron, but to represent it one needs a simplicial complex that has at
least 10 triangles, 15 edges, and 6 vertices.

That is why we briefly introduce the notion of ∆-complex (pronounced:
”Delta-complex”), which is more flexible, ”modern” way to use simplicial
approach. It does have some drawbacks as well, but suits very well for the
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first introduction and illustation of the homological methods.

Before going into complicated formalities that us first grasp the idea via
simple examples. Let us start with the same square devided into 2 triangules
along the diagonal.

U

V

a

a

This is an excellent way to triangulate a square, but what if we glue to-
gether, say, horizontal sides of the square (both indicated by the letter ’a’ in
the picture), thus obtaining a hollow tube. It is very tempting to represent
the space thus obtained as a sort of a simplicial complex, where also sides
’a’ are common sides of the triangle. Now this won’t be a simplicial complex
in a strict sence we definied it to be in the previous section, since now we
have two triangles, whose intersection is not a common side, but a union
of two common sides. Nevertheless it provides a very simple combinatorical
description of our space. We could introduce a ” subdivision” that would be
an honest simplicial complex, whose polyhedra is our tube (see the picture
below), but it would be more complicated and have more simplices. Also,
the simple geometrical intuition and naturality is lost.

a

a

Let us continue with the same ideas around our square. If we again
glue together horizontal sides but changing direction of the one of them, we
obtain a familiar Mobius band. Again we can think of it as a union of two
triangules with two common sides - this time the way the sides are identified
is just slightly different.
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U

V

a

a

If we identify horizontal sides together and vertical sides together, both
having the same orientation, we obtain a torus. This time the intersection of
two triangles consists of their mutual boundary with some interesting iden-
tifications - in fact it is easy to see that all four vertices are now identified
together and ”1-simplices” of this ” complex” form 3 circles glued in a point
(which corresponds to the glued vertices).

U

V

a

a

bb

If we ”twist” one of the sides, for example leave the identification of two
vertical sides as above, but glue horizontal sides with opposite orientations,
we obtain a Klein’s bottle. Once again all vertices are identified at one point
and ”1-skeleton” consists of 3 circles glued together at this point.

U

V

a

a

bb

If both sides are identified ”with a twist” the resulted space is a projective
space RP 2.
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V

a

a

bb

So we see that by loosing up the strict rules of simplicial complexes a little,
we immediately obtain simple combinatorial description of some interesting
well-known spaces. These examples give us enough courage to formalise these
ideas.

For the technical reasons we choose to formalise new notion in terms of
ordered simplices. We denote an ordered simplex with vertices v0 < v1 <
. . . < vn by an (n + 1)-tuple (v0, . . . , vn). Recall that if (w0, w2, . . . , wn) is
another ordered simplex of the same dimension there is a unique simplicial
mapping f : (v0, . . . , vn) → (w0, . . . , wn) that preserves ordering, namely the
one determined by f(vi) = wi for all i = 0, . . . , n. This mapping is then
necesarily a homeomorphism.

We also adopt the following notation: if (v0, . . . , vn) is an ordered simplex
as above, its ith face (v0, . . . , v̂i, . . . , vn) is denoted by ∂i(σ).

Definition 1.3.1. A ∆-complex K consists of the following data.
1) A collection {σj}j∈I of ordered simplices, such that every face (with in-
duced natural order) of a simplex in K is also a simplex in K. It is not
required that all simplices lie in the same vector space.

2) An equivalence relation ∼ defined on the set Kn of ordered n-simplices
of K for every n ∈ N. We assume that these relations respect faces in a
natural way - if σ ∼ σ′ also ∂i(σ) ∼ ∂i(σ′) for all i = 0, . . . , dim σ.

Of course what we are really interested in is the space obtained from this
data.
We define a polyhedron |K| of the given ∆-complex K as follows. First we
form the disjoint topological union of all simplices in K,

Z =
⊔

j∈I

σj .

Next we do the identifications of 2-types,
1) If σ′ < σ we identify σ′ with its copy in σ (one of the faces), in an obvious
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way.
2) If σ ∼ σ′ let f : σ → σ′ be a unique order-preserving simplicial bijection.
Then identify x ∈ σ and f(x) ∈ σ′.

These identifications define an equivalence relation ∼ on Z.
Finally define

|K| = Z/ ∼
to be a quotient space, equipped with a quotient topology. This space is
called a polyhedron of the ∆-complex K. More generally we could say that
a space X is a polyhedron if it is homeomorphic to a polyhedron of some
∆-complex. This is not in contradiction with our previous terminology - it
can be proved that every ∆-complex is trianguable, although we won’t go
into proving that. Hence we don’t obtain new spaces, but we do obtain a
more economical and efficient way to desribe our spaces with combinatorial
data.

The image of a simplex σ = (v0, . . . , vn) ∈ J in the quotient space |K|
is denoted by [v0, . . . , vn] and is called a geometric n-simplex of |K|. Ge-
ometrically it looks like a simplex, but with some faces possibly identified.
For example S1 can be represented as a 1-simplex [v, v] with ith endpoints
identified.
The set of geometric simplices is essentialy the same as the quotient set
Kn/ ∼, so we will denote it as Kn/ ∼.

We also introduce the notion of a characteristic mapping of σ.
Let ∆n be the standard n-simplex, considered as an ordered simplex (e0, . . . , en).
Let α : ∆n → σ be the unique simplicial homeomorphism that preserves the
order of vertices. Let i : σ → Z be a natural imbedding of σ in the disjoint
union of all simplices. Finally let π : Z → |K| be a quotient map. We define
a characteristic mapping of σ denoted by

fσ : ∆n → |K|

to be the composition π ◦ i ◦ α. If σ ∼ σ′, then obviously

fσ = f ′
σ.

Otherwise fσ and f ′
σ are not the same mapping. Hence there is a bijective

correspondence between the set of all geometric simplices of |K| and the set
of all characteristic mappings.
From the definition of |K| it follows that all identifications inside a given
simplex σ happen on the boundary. Hence
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Lemma 1.3.2. The restriction fσ| int∆n of the characteristic mapping fσ
to the interior of ∆n is injective, in fact a homeomorphism to its image
fσ(int∆n), which we call the interior of the geometric simplex fσ(∆n). |K|
is a disjoint union of these interiors.
The topology of |K| is co-induced by the set of characteristic mappings {fσ}σ∈K .

Proof. Exercise.

A ∆-subcomplex L of K is defined in an obvious manner - the collection
of its simplices must be closed under all faces and two simplices in L are
identified in L if and only if they are identified in K.
In this case |L| imbedds as a subspace of |K| in an obvious way and is closed
in it (exercise).

Example 1.3.3. Suppose K is a ∆-complex and n ∈ N. Denote by Kn a
subcomplex generated by all simplices of K with dimension ≤ n. Obviously
this set is closed under faces and identifications, so it really is a subcomplex.
It is called the n-skeleton of K. Correspoding subspace |Kn| of |K| is called
the n-skeleton of |K|.
It is clear that K0 is just a collection of 0-simplices, which are isolated points,
so |K0| is also a disjoint union of isolated points (some might be identified
but this does not effect the conlusion). In other words K0 is a discrete space.
The elements of |K0| are called the vertices of the polyhedron |K|.
The 1-simplices of |K| are called the edges.

When one tries to represent a given space as a polyhedron of a ∆-complex,
it is important to pay attention to the ordering - remember that all simplices
must be ordered and whenever you want to identify two faces of different
simplices identification must preserve ordering.

Example 1.3.4. Let us illustrate this with the example of hollow tube from
the beginning of this section.
All we have to do is to choose the ordering of the vertices of the both tri-
angles, so that it is compatible with the identifications of faces. The picture
below shows one possibility. The ordering of vertices is indicated by an arrow
on every 1-simplex, which goes from the smaller vertex to the greater vertex.
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U

V

a

a

cb d

x y

w = yz = x

Suppose the corners of this square are the points x = (0, 0), y = (1, 0), z =
(0, 1), w = (1, 1) of the plane. Then the ∆-complex consists of two 2-simplices
U and V with ordering of vertices V = (y, z, x) and U = (w, y, z), and their
faces - (y, x) and (w, z), which are identified (and called ’a’), b = (z, x),
c = (w, y) and d = (y, w). Due to identification there are only two vertices -
x and y, since after the identifications take place we obtain that z = x and
w = y .

As a further example/exercise reader should go through all examples in
the beginning of this section (except for the tube which is already checked)
and give a formal description of corresponding ∆-complexes. Remember to
pay attention to the ordering!

Every polyhedron of a simplicial complex K can be considered as a poly-
hedron of a ∆-complex in a natural way. We do need to order every simplex
in a consistent way though, but this can be always done - just choose some
linear ordering on the set of all vertices of K. You might need the Axiom
of Choice for large cases, but you do believe in the Axiom of Choice, don’t
you? :)

It follows that all the constructions made for ∆-complexes work for sim-
plicial complexes as well, in particular a simplicial homology defined in the
next section.

1.4 Exercises

1.4.1 Simplices

1. Consider the pairs (V, {v1, . . . , vn}), where V is finite-dimensional vec-
tor space and {v1, . . . , vn} is a fixed basis of V . Thus for every n ∈ N
the pair (Rn, {e1, . . . , en}) is an example of such pair. Moreover for ev-
ery pair (V, {v1, . . . , vn}) there is a unique linear bijection f : V → Rn
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such that f(vi) = ei for all i ∈ {1, . . . , n}.
a) Assign to a pair (V, {v1, . . . , vn}) unique topology such that f as
above is a homeomorphism. Prove that +: V ×V → V and · : R×V →
V are continuous with respect to this topology.
Suppose (W, {w1, . . . , wm}) is another pair and l : V → W is linear.
Deduce that l is continuous.
b) Deduce that the topology so assigned to V does not depend on the
chosen basis {v1, . . . , vn}) (apply a) to the identity mapping).

2. Suppose A ⊂ V is a non-empty subset. Prove that A is affine if and only
if there is v ∈ V and a linear subspace W ⊂ V such that A = x +W .
Moreover show that in this case W is unique.

3. a) Show that an affine/convex set A is closed under affine/closed com-
binations. In other words prove that if a1, . . . , an ∈ A, r1, . . . , rn ∈ R,
r1+ . . .+ rn = 1 and in convex case also ri ≥ 0 for all i = 1, . . . , n, then

r1a1 + . . .+ rnan = x ∈ A.

b) Suppose A ⊂ V . Prove that

aff(A) = {r1a1 + . . .+ rnan | ai ∈ A, r1 + . . .+ rn = 1},

conv(A) = {r1a1 + . . .+ rnan | ai ∈ A, ri ≥ 0, r1 + . . .+ rn = 1}.
c) Suppose f : C → C ′ is an affine mapping between convex sets. Prove
that

f(r1a1 + . . .+ rnan) = r1f(a1) + . . .+ rnf(an),

if a1, . . . , an ∈ A, r1, . . . , rn ∈ R, r1 + . . . + rn = 1 and ri ≥ 0 for all
i = 1, . . . , n.

4. Prove that the set of vertices of a simplex is uniquely determined by
the simplex. (Hint: show that a point is not a vertex if and only if it
is a midpoint of an interval contained entirely in the simplex).

5. Let V be a finite-dimensional vector space.
a) Suppose A ⊂ V and {v0, . . . , vn} is a maximal (with respect to inclu-
sion) affinely independent subset ofA. Prove that aff(A) = aff({v0, . . . , vn}).
b) Suppose C ⊂ V is convex and non-empty. Prove that C has a non-
empty interior with respect to aff(C). (Hint: use a) and notice that
the simplex spanned by {v0, . . . , vn} is a subset of C.)
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6. Show that the standard n-simplices defined by

∆n = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i,
n∑

i=1

xi ≤ 1},

∆′
n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0 for all i,

n∑

i=0

xi = 1}

are compact Hausdorff spaces (as subsets of Euclidean spaces).

7. Suppose C ⊂ Rn is a closed bounded convex set and 0 is the interior
point of C. Let f : ∂C → Sn−1, f(x) = x/|x| and assume known that
f is a homeomorphism.
Prove that G : B

n → C defined by

G(t) =

{
|t| ·

(
f−1 t

|t|

)
if t 6= 0,

0, if t = 0

is a homeomorphism.

1.4.2 Simplicial complexes.

8. Suppose V is a vector space. Show that the collection K = {σi}i∈I of
simplices in V is a simplicial complex if and only if
1) For every simplex σ in K its every face also belongs to K.
2’) For every x ∈ ⋃

i∈I σi there is a unique i ∈ I such that x is an
interior point of the simplex σi.

9. Suppose K is a simplicial complex and X is a topological space.
Prove that a mapping f : |K| → X is continuous with respect to the
weak topology of |K| if and only if the restriction of f to every simplex
σ ∈ K is continuous.
b) Conclude that every simplicial mapping f : |K| → |K ′| (K and K ′

simplicial complexes) is continuous.

10. Suppose L is a subcomplex of a simplicial complex K. Show that
a) The weak topology on the simplicial complex |L| is the same as the
relative topology on |L| induced by the weak topology of |K|.
b) |L| is closed in |K|.

43



11. Suppose x ∈ |K|.
a)Define L = {σ ∈ K|x /∈ σ}. Show that L is a simplicial complex and

|K| \ |L| = St(x).

Conclude that St(x) is an open neighbourhood of x in |K|.
b)Suppose x ∈ |K| and all the vertices of car(x) are v0, . . . , vn.
Prove that

St(x) =
⋃

{int σ | car(x) < σ} =
⋃

{int σ | v0, . . . , vn are vertices of σ}.

and

St(x) =

n⋂

i=0

St(vi).

12. Suppose K ′ is a subdivision of K. Prove that the Euclidean topologies
defined by K ′ and K on |K ′| = |K| coincide

13. a) Suppose σ is a simplex in Rm, with vertices {v0, . . . , vn}. Prove that

diam σ = max{|vi − vj|},

where | · | is a standard norm on Rm.
b) SupposeK is a finite simplicial complex in Rm. Let σ′ be a simplex in
a first barycentric division K(1), with vertices {b(σ0), b(σ1), . . . , b(σn)},
where σ0 < . . . < σn = σ ∈ K. Prove that

diam σ′ ≤ n

n+ 1
diam σ

14. Let L ⊂ K be a subcomplex of a simplicial complex K. We say that
L is full in K if it satisfies the following condition. Suppose a0, . . . , an
are vertices in L that span a simplex σ in K. Then σ ∈ L.
a) Give an example of a simplicial pair (K,L) such that L is not full
in K.
b) Suppose (K,L) is a simplicial pair. Prove that L(1) is full in K(1).

15. Suppose K,K ′ are simplicial complexes and a mapping g defined on
the set of vertices of K is given, satisfying the following condition:
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If {v0, . . . , vn} are vertices of a simplex in K, then {g(v0), . . . , g(vn)}
are vertices of a simplex in K ′.
Prove that g can be extended to a simplicial mapping g : |K| → |K ′|
in a unique way.

16. Suppose g is a simplicial approximation of the continuous mapping
f : |K| → |K ′|. Show that

f(St(v)) ⊂ St(g(v))

for every vertex v ∈ K.

17. Consider the boundary of the equilateral triangle σ as a 2-simplex with
vertices v0, v2, v4. For odd i = 1, . . . 5 denote by vi the barycentre of
the 1-simplex [vi−1, vi+1], where we identify v6 = v0.
Let K = K(∂σ). Let f : |K| → |K| be the unique simplicial mapping
f : |K(1)| → |K(1)| defined by f(vi) = vi+1. Prove that as a mapping
f : |K| → |K| f does not have a simplicial approximation, but as a
mapping f : |K(1)| → |K| f has exactly 8 simplicial appoximations.
List all approximations.

18. a) Suppose m ∈ N. Let K be an m-dimensional simplicial complex and
K ′ be a simplicial complex whose dimension is > m. Show that every
continuous mapping f : |K| → |K ′| is homotopic to a mapping, which
is not surjective (Hint: simplicial approximation).
b) Suppose m < n. Prove that any continuous mapping f : Sm → Sn

is homotopic to a constant mapping.

19. Suppose v0, . . . , vn are vertices of the simplicial complex K. Show that
they span a simplex of K if and only if

∩n
i=1 St(vi) 6= ∅.

20. Suppose f : |K| → |K ′| is a continuous mapping between polyhedrons.
Let g and g′ be simplicial approximations to f . Prove that for every
simplex σ

g(σ) ∪ g′(σ)
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is a simplex in K ′.

21. Suppose f : |K| → |K ′| is a continuous mapping between polyhedrons,
g is a simplicial approximation of f and L ⊂ K is a subcomplex such
that f ||L| is simplicial. Prove that f ||L| = g||L|.

1.4.3 ∆-complexes

22. Suppose K is a ∆-complex and σ is an n-simplex of K.
Show that the restriction of the characteristic mapping fσ| int∆n to the
interior of ∆n is a homeomorphism to its image and |K| is a disjoint
union of the sets {fσ(int∆n)} (meaning that two sets are either the
same or disjoint).
Prove that the topology of |K| is co-induced by the set of charachter-
istic mappings {fσ}σ∈K .

23. Prove that the examples constucted from the square in the beginning
of the section on ∆-complexes are indeed ∆-complexes (except for the
first example of the tube, which is already checked in the lecture notes).
Give an ordering on every simplex, pay attention to the comparatibility
of the ordering and identifications!

24. Suppose L is a subcomplex of a ∆-complex K. Show that |L| is a closed
subspace of |K| in an obvious way.

25. Suppose in an ordered triangle [v0, v1, v2] i.e. 2-simplex you identify
two faces [v0, v1] and [v1, v2] (preserving the ordering, as usual). What
familiar space is this quotient space homeomorphic with? (Hint: cut
the triangle in half, as the picture indicates, making it a simplicial
complex made up by two triangles, then do the identification, then
glue triangles back. Drawing pictures might help! Remember to keep
the track of the ordering.)
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What if we identify sides [v0, v1] and [v0, v2] instead?
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