
Foreword

Mathematics based on the abstract set-theoretic approach as we know it to-
day is quite a modern science - it is at most something like 200 years old.
The development of the ”foundations” of mathematics started in the 19th
century with the work of scientists like Cauchy, Riemann and Cantor, to
name only a few.

Pretty soon top mathematicians discovered a number of basic topological
questions that sounded very elementary and had a clear intuitive ” answer ”,
but the actual precise mathematical proof that this answer is right seemed
very difficult.

For instance consider Euclidean vector spaces Rn, which provide an im-
portant enviroment for analysis, linear algebra and topology. It seems intu-
itively clear that different spaces Rn and Rm, m 6= n, should not be homeo-
morphic as spaces, but it took many years of research and the development
of advanced mathematical tools and techniques to actually prove this result,
known as ” The invariance of domain ” principle. One of the reasons this
claim seems obvious is our intuition regarding the notion of ” dimension ” -
it seems that, for example, the plane R2 has ”more space” than the real line
R and the 3-dimensional ” space ” R3 has even more ”filling”, so it seems
impossible to even fill bigger dimensional space with smaller dimensional.
However, some 20 years before the invariance of domain was actually proven
by Brouwer, the Italian mathematician Giuseppe Peano managed to constuct
a surjective continuous mapping f : I → I2 (also known as ” a space-filling
curve ”), thus showing that you can actually ” fill ” a bigger dimensional
object with a smaller dimensional. In light of this discovery some mathe-
maticians even doubted whether the invariance of domain was true at all.

Soon the scientists that had tried to solve these topological problems
realized that the right strategy lies in the construction of invariants i.e.
”objects” that are associated with spaces and mappings between spaces and
somehow reflect their properties. If these invariants are in some sence ” sim-
pler” than the studied space i.e. reflect only some of its properties, they are
easier to handle, so the difficult problem might turn into simpler problem,
defined for these invariants, which is possible to solve. If a certian inavariant
fails to offer enough help, some other invariant or a combination of invariants
might do the trick, so it is also important to develop ”enough” of these in-
variants. Today most of these invariants are algebraic in nature, that is why
the field in now known as algebraic topology. In the beginning, for instance
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in Brouwer’s days, these invariants were merely discrete objects, for example
integer numbers, that is why then this approach was known as combinato-
rial topology.

The construction of one such invariant (or to be precise rather the family
of invariants)- the singular homology theory (with integer coefficients)
is the main subject and the goal of this course. We will prove the basic
properties of this construction and show how to apply the new instruments
in order to prove the classical topological results, such as the invariance of
domain. Other similar problems we will investigate include the following:
1) Invariance of domain, general version - if U and V are homeomorphic
subsets of Rn and U is open, also V is open.
2) Brouwer-Jordan separation theorem - if S ⊂ Rn is homeomorphic to the
sphere Sn−1, then Rn \S has exactly two path components and S is a bound-
ary of both.
3) Brouwer fixed point theorem - any continuous mapping f : B

n → B
n
has

a fixed point i.e. f(x) = x for some x ∈ B
n
.

4) Sn is not contractible to a point.

5) Sn is not a retract of B
n+1

.
6) Hairy Ball Theorem - if n is even, Sn has no non-zero tangent vector field.

In fact claims 3), 4) and 5) are equivalent - it is enough to prove one of
them, since each one of them implies the others.
As an example of the converse approach - study of purely algebraic problems
using topology - we will prove the Fundamental Theorem of Algebra, which
says that every non-constant polynomial with complex coefficients have at
least one complex root.

The singular homology theory itself is a fairly modern construction - it
was invented in 1940’s. All the problems listed above were already solved
at that time, using earlier versions of similar ideas, such as Betti’s numbers
and various simplicial methods. The latter has not only historical value -
simplicial methods are still very useful and important in modern mathemat-
ics, both in theory and in concrete calculations and applications. They have
also given rise to a number of abstract generalizations, such as simplicial
objects and related abstract combinatorial notions. That is why we start the
course with a brief journey to the geometrical, concrete world of simplices
and simplicial methods. This part of the course does not contain any algebra
and is intended to give the reader a chance to see some concrete and more
down-to-earth mathematics related to our main subjects, before diving into
abstract algebra of homology theory. On the other hand concrete geometric
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notions of this introduction will make it easier to understand and motivate
the abstract homological algebra which constitutes the main content of the
course.

After some necessary algebra is developed we define and study the prop-
erties of the singular homology theory. After this machinery is complete, we
apply it to topological problems such as the ones listed above. The very end
of the course is dedicated to the notion of degree of a mapping f : Sn → Sn.
Historically this (and simplicial approximation) is precisely the tool Brouwer
used to prove his fixed point theorem and invariance of domain theorem in
the beginning of the 20th century. We define the concept of degree using the
singular homology theory. Brouwer did not of course know anything about
homology groups, so his definition was more complicated and geometrical in
nature. However it was one of the first examples of the combinatorial invari-
ants defined for topological objects.

In this course we only have time to scratch the very surface of the subject
known as ” algebraic topology ”, this is why it is called ”Introduction to Al-
gebraic Topology”. Perhaps the more precise name would be ” Introduction
to Homological Methods”, since this course is mainly concerned with homol-
ogy theory. Another big branches of algebraic topology include homotopy
theory, K-theory, theory of obstructions and others. And of course it goes
without saying that even homology theory has much more to it than what
we have time for. The interested reader should start further reading from
the books that are listed in the ”bibliography” section.
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