FUNKTIONAALIANALYYSI II, 2011
EXERCISES, SET 4
TO BE RETURNED ON TUESDAY DEC. 13th AT LATEST, PERSONALLY OR TO THE MAILBOX OF J.T.

1. Is the operator

$$
L:=\left(1-|x|^{2}\right) \sum_{j=1}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}}
$$

elliptic on the domain $\Omega=\{|x|<1\} \subset \mathbb{R}^{3}$?
2. Is the operator

$$
\begin{array}{ll}
\text { a) } L:=\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}, \quad \text { b) } T:=\left(\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}}\right)^{2}
\end{array}
$$

elliptic on $\Omega:=\mathbb{R}^{2}$?
3. Let Ω be a bounded domain in \mathbb{R}^{n} and assume $1 \leq n<p, \lambda:=1-n / p$. Using Proposition 6.13, i.e. the existence of a continuous embedding

$$
W_{0}^{1, p}(\Omega) \rightarrow C^{0, \lambda}(\bar{\Omega})
$$

and proofs and methods of earlier results, prove Corollary 6.14: assume that $m \in \mathbb{N}$, $j \in \mathbb{N}_{0}, 0<\lambda \leq 1,1 \leq p<\infty$ and $(m-j-\lambda) p \geq n$. Then there exists a continuous embedding

$$
W_{0}^{m, p}(\Omega) \rightarrow C^{j, \lambda}(\bar{\Omega}) .
$$

4. Let $\Omega:=]-1,1[\subset \mathbb{R}$ and $1<p<\infty$. Construct a continuous extension operator $E: W^{1, p}(\Omega) \rightarrow W^{1, p}(\mathbb{R})$. ("Extension operator" means that E must have the property $(E f)(x)=f(x)$ for all $f \in W^{1, p}(\Omega)$, for almost every $x \in \Omega$, i.e. E extends the functions $f \in W^{1, p}(\Omega)$ to the whole set \mathbb{R}.) Hint. The case II.C') in Theorem 6.4 holds, so that we may assume $f \in W^{1, p}(\Omega)$ belongs to the space $C([-1,1])$. In particular, $f(-1)$ and $f(1)$ are well defined. Define the extension of f so that $f(x)=0$ for $|x| \geq 2$; but what do you do for $1<|x|<2$?
Make a guess (without proofs) about possible extensions $E^{(j)}: W^{j, p}(\Omega) \rightarrow W^{j, p}(\mathbb{R})$ for larger $j \in \mathbb{N}$.
5.-6. Let $1 \leq p<\infty, m \in \mathbb{N}$ and $p<q<n p /(n-m p)$, where n is the dimension of the domain, \mathbb{R}^{n}. By constructing an explicit sequence of functions, show that the embedding $W^{m, p}\left(\mathbb{R}^{n}\right) \rightarrow L^{q}\left(\mathbb{R}^{n}\right)$, existing by Theorem 6.4. of the lectures, cannot be compact, i.e., the identity operator is not a compact operator, i.e., the unit ball of the Banach space $W^{m, p}\left(\mathbb{R}^{n}\right)$ is not a precompact subset of $L^{q}\left(\mathbb{R}^{n}\right)$, i.e. there exists a sequence $\left(f_{l}\right)_{l \in \mathbb{N}} \subset W^{m, p}\left(\mathbb{R}^{n}\right)$ such that $\left\|f_{l}\right\|_{p, m}=1$ for all l but no subsequence converges in $L^{q}\left(\mathbb{R}^{n}\right)$.
7.-9. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with a regular enough (at least C^{2}) boundary. Consider the following Neumann problem:

$$
\begin{aligned}
& -\Delta u+u=f \quad \text { in the domain } \Omega \\
& \partial_{\nu} u=0 \quad \text { in } \partial \Omega,
\end{aligned}
$$

where $f \in C(\bar{\Omega})$ is given and ∂_{ν} denotes the partial derivative in the direction of the outer normal vector of the boundary. By a classical solution we mean a function $u \in C^{2}(\Omega) \cap C(\Omega)$ satisfying the above equalities.
a) Let us define the weak solution as a function $u \in W^{1,2}(\Omega)$, which satisfies

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi+\int_{\Omega} u \varphi=\int_{\Omega} f \varphi
$$

for all $\varphi \in W^{1,2}(\Omega)$; here "." denotes the inner product of \mathbb{R}^{3}. By using a relevant Green formula show that a classical solution to the above Neumann problem is always a weak solution.
b) Prove the existence and uniqueness of the weak solution using the Lax-Milgram theorem.

