FUNKTIONAALIANALYYSI II, 2011

EXERCISES, SET 3

TO BE RETURNED ON WED. NOVEMBER 23rd AT LATEST, PERSONALLY OR TO THE MAILBOX OF J.T.

- 1. Let $\Omega :=]0, \infty[\subset \mathbb{R}$. Show that the following inclusions are *strict*, i.e., the spaces are not the same: $C^1(\bar{\Omega}) \subset C^1_B(\Omega) \subset C^1(\Omega)$.
- 2. Show that the space $C(\bar{\mathbb{R}})$ is not dense in $L^{\infty}(\mathbb{R})$.
- 3. For all λ , $0 < \lambda < 1$, construct a function $f : \mathbb{R} \to \mathbb{R}$, which is an element of the Hölder–space $C^{0,\lambda}(\bar{\mathbb{R}})$ but not that of $C^1(\bar{\mathbb{R}})$.
- 4. Let a > 0 and b > 0, and $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$, and

$$f(x) := x^{-a}$$
 , $g(x) := x^{-b}$

for $|x| \le 1$, and f(x) = g(x) = 0 for |x| > 1.

What does the Young inequality imply about the existence of the function f * g as an element in the space $L^r(\mathbb{R})$ for different a, b and $1 \le r \le \infty$?

- 5. Show that the operator P defined just before Theorem 5.12 in the lecture notes is an isometry from the Sobolev space onto a closed subspace of X.
- 6. Show by an example, that $W_0^{1,1}(\Omega) \neq W^{1,1}(\Omega)$ for $\Omega := \{|x| < 1\} \subset \mathbb{R}^2$.
- 7. Using the definition, show that the open unit ball of \mathbb{R}^2 has the cone property.
- 8. For which values of $a \in \mathbb{R}$ the function $|x|^a = (x_1^2 + x_2^2)^{a/2}$ belongs to the Sobolev space $W^{1,p}(\Omega)$, where Ω is the open unit ball $\{|x| < 1\}$ of \mathbb{R}^2 and $1 \le p \le \infty$?
- 9. The same as in the previous problem, for the function $|x|^a = (x_1^2 + x_2^2 + x_3^2)^{a/2}$, the Sobolev space $W^{1,p}(\Omega)$, and Ω as the open unit ball of \mathbb{R}^3 .