1. Let us consider here simple functions of intervals χ in \mathbb{R}, which are constants on some subintervals of \mathbb{R}, e.g. $\chi(x)=2$ for $1 \leq x \leq 4$ and $\chi(x)=-1$ for $4<x \leq 5$ and $\chi(x)=0$ elsewhere.
Find a sequence of simple functions which converges (weakly) in $\mathcal{D}^{\prime}(\mathbb{R})$ to the distribution a) δ_{0}, b) δ_{0}^{\prime}.
Is it true that in $\mathcal{D}^{\prime}(\mathbb{R})$,

$$
\lim _{n \rightarrow \infty} n \delta_{-1 / n}-n \delta_{1 / n}=2 \delta_{0}^{\prime} .
$$

2. Let $\left(f_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$ be sequences of, say, functions in $L^{1}(\mathbb{R})$ such that $f_{n} \rightarrow \delta_{a}$, $g_{n} \rightarrow \delta_{b}$ in $\mathcal{D}^{\prime}(\mathbb{R})$, where $a, b \in \mathbb{R}$ are fixed. Let us assume in addition that the $L^{1}(\mathbb{R})$-norms of all functions are bounded by some constant $C>0$. Prove that

$$
\lim _{n \rightarrow \infty} f_{n} \otimes g_{n} \rightarrow \delta_{(a, b)}
$$

in $\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$.
3. Give examples of sequences of simple functions of rectangles and discs of \mathbb{R}^{2}, which converge to $\delta_{\overline{0}}$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$. Problem 2 may be of some use.
4. Write the distribution $T \in \mathcal{D}^{\prime}(\mathbb{R})$,

$$
T:=\delta_{5}-\frac{d \delta_{0}}{d x}
$$

as a derivative of a continuous function on \mathbb{R}.
5. Let $Y: \mathbb{R} \rightarrow \mathbb{C}$ be the step function. Show that $d \delta_{0} / d x * Y=\delta_{0}$ and that $1 * d \delta_{0} / d x=0$. Calculate

$$
\begin{equation*}
1 *\left(\frac{d \delta_{0}}{d x} * Y\right) \quad \text { and } \quad\left(1 * \frac{d \delta_{0}}{d x}\right) * Y . \tag{0.1}
\end{equation*}
$$

This seems to violate the associative law. What's wrong?
6. Let $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$, and let $\gamma_{k, m}$ be as in (4.1) of the lecture notes. Show that the condition " $\gamma_{k, m}(f)<\infty$ for all k and m " is equivalent to the condition

$$
\begin{equation*}
" \lim _{|x| \rightarrow \infty}|x|^{k}\left|D^{\alpha} f(x)\right|=0 \tag{0.2}
\end{equation*}
$$

for all k and α ".
7. Using the definition of the seminorms $\gamma_{k, m}$, show that the linear operator T,

$$
\begin{equation*}
(T \varphi)(x)=5 \sin (x) \varphi(x)+\varphi(2 x) \tag{0.3}
\end{equation*}
$$

is continuous $\mathcal{S}(\mathbb{R}) \rightarrow \mathcal{S}(\mathbb{R})$.
8. Show that the function $e^{a x}$ is not a tempered distribution on \mathbb{R}, if $a \neq 0$ is a constant.
9. Show that the operator $G: T \mapsto \sin x T$ is sequentially continuous $\mathcal{S}^{\prime}(\mathbb{R}) \rightarrow \mathcal{S}^{\prime}(\mathbb{R})$, when this space is endowed with the weak topology. Sequential continuity means
that if the sequence $\left(T_{j}\right)_{j=1}^{\infty}$ satisfies $T_{j} \rightarrow T$ weakly in $\mathcal{S}^{\prime}(\mathbb{R})$ as $j \rightarrow \infty$, then $G T_{j} \rightarrow G T$ weakly in $\mathcal{S}^{\prime}(\mathbb{R})$.
10. Calculate the Fourier-transforms of the tempered distributions $x^{k}, k \in \mathbb{N}$ on \mathbb{R}. Also calculate the Fourier-transform of the polynomial P of two variables, $P(x):=$ $x_{1}^{2} x_{2}$, where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
11. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ and if there exist constants $C>0$ and $a>n+1$ such that

$$
\begin{equation*}
|f(x)| \leq \frac{C}{(1+|x|)^{a}} \tag{0.4}
\end{equation*}
$$

then $\mathcal{F} f$ is at least m times differentiable for $m<a-n-1$. (Differentiate under the integral sign.) This is an indication of the important basic intuition that the more rapidly f vanishes at the infinity, the more smooth is its Fourier tranformation. Conversely, if \hat{f} vanishes at a certain rate at infinity, the f must have a corresponding amount of smoothness.

