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30. This lecture is about iterated games. In an iterated game, the same game is
played over and over again the same two opponents. Each repetition is called a
‘round’. The number of rounds may be finite, infinite or random.

Remember the Prisoner’s Dilemma (PD) with the strategies ‘defect’ (D) and ‘co-
operate’ (C) and payoff matrix

PD D C

D P , P T , S
C S , T R , R

(payoffs to the row-player) with S < P < R < T and S + T < 2R. ‘Defect’
is a strictly dominating strategy, and therefore (D,D) is the dominating strategy
solution, even though both players would have a higher payoff if they played (C,C).
Is this different in the Iterated Prisoner’s Dilemma (IPD)?

31. If the IPD is played exactly N times and both players know this, then the
strategy ‘always defect’ is dominant. The proof is by backward induction: ‘defect’
is dominant in the last round, and so both players will defect in round N . Given
that both players defect in round N , ‘defect’ is also dominant in the second-to-last
round, and so both players will defect in round N − 1 as well, and so on. The
same applies if the game length is unknown but has a known upper limit.

For cooperation to emerge between two players, the total number of rounds N
must be random and unknown to the players. The most common way (but not
the only way) to implement this into the model is by assuming that after each
round there is a constant probability δ ∈ (0, 1) that there is another round. The
total number of rounds then is a random variable with a geometric probability
distribution and expectation

1 + δ + δ2 + δ3 + · · · = 1

1− δ

1
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A strategy in the IPD tells for each round what action (D or C) to choose. We can
distinguish between fixed strategies, random strategies and rule-based strategies.
Examples of fixed strategies are:

• allD = (D,D,D,D,D,. . . )

• allC = (C,C,C,C,C,. . . )

• Alternate=(C,D,C,D,C,. . . )

• etc.

A random strategy is a sequence (p1, p2, p3, . . . ) where pn ∈ [0, 1] is the probability
of choosing D in the nth round. Obviously, the fixed strategies form a subset of
the random random strategies.

In a rule-based strategy, the choice of action depends on the history of the game
up to that moment. For example, take ‘Tit for tat’ (TFT): “Choose C in the
first round; after that choose whatever your opponent did in the previous round.”
Successive rounds for TFT against an opponent thus look like:

TFT: .. D C C D C D D C C C D C ..
opponent: .. D C C D C D D C C C D C ..

Tit for tat is an English saying meaning “equivalent retaliation”: TFT rewards
cooperation with cooperation and punishes defection with defection.

Another example of a rule-based strategy is ‘Pavlov’: “Choose C in the first round;
after that repeat the same action as in the previous round if your payoff was high
(i.e., R or T ); otherwise change.” Successive rounds for Pavlov against the same
opponent as above thus look like:

Pavlov: .. C D D D C C D C C C C D D ..
opponent: .. D C C D C D D C C C D C ..

Pavlov is a ‘win-stay, lose-switch’ strategy. Variations of Pavlov start with a
defection, or recognize only T or all three P , R and T as high payoffs.

TFT and Pavlov are so-called memory-1 strategies, i.e., their rule only needs to
remember the previous round. An example of a memory-2 strategy (which remem-
bers the last two rounds) is ‘Tit for two tats’ (TFTT): “Start with two rounds of C;
after that respond with defecting only if the opponent defects twice in a row.”

TFTT: .. C C D C C D C C C C C ..
opponent: .. D C D D C D D C C C D C ..

In the TFT strategy, once the opponent defects, the TFT player immediately
responds by defecting on the next move. If a C (with some low probability) is
misinterpreted by the opponent as a D, then two TFT players may accidentally
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get stuck in a (C×D)-(D×C)-cycle (or even a (D×D)-cycle), resulting in a poor
outcome for both players. A TFTT player, however, will let the first defection go
unchallenged as a means to avoid the above trap. Only if the opponent defects
twice in a row, the tit for two tats player will respond by defecting.

Another example of a memory-2 strategy is ‘Two tits for Tat’ (TTFT): “Start with
C; after that respond with two defections to every defection of the opponent.”

TTFT: .. D D C D D D D D C C D D ..
opponent: .. D C C D C D D C C C D C ..

The strategy ‘Grim’ starts with C but changes to D after the very first defection by
its opponent and plays D from then onwards. Grim is a an example of a memory-
∞ strategy: it never forgets and never forgives.

32. How to calculate the payoffs for the IPD with, e.g., TFT against Pavlov? To
make the example a bit more interesting we shall use a version of Pavlov that starts
in the first round with a defection, and call this slightly more grim variant Pavlov∗.
So the question is: what are the entries of the following payoff matrix?

IPD TFT Pavlov∗

TFT ? ?
Pavlov∗ ? ?

TFT×TFT gets immediately in a (C×C)-cycle. The overall expected payoff ECC

to TFT against TFT is given by

ECC = R + δECC

and hence

(1) ECC =
R

1− δ
where δ ∈ (0, 1) is the probability of a next round.

TFT×Pavlov∗ gets into a (C×D)-(D×D)-(D×C)-cycle. Let now ECD and EDD

and EDC denote the overall payoffs to TFT if the cycle is started in (C×D) or
(D×D) or (D×C), respectively. Then we have ECD = S + δEDD

EDD = P + δEDC

EDC = T + δECD

which is readily solved for ECD, EDD and EDC. Of these we only need the first one,
because that’s how a TFT×Pavlov∗ contest actually starts. This gives us

(2) ECD =
S + δP + δ2T

1− δ3
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Pavlov∗×TFT gets into a (D×C)-(D×D)-(C×D)-cycle. If EDC and EDD and ECD

denote the overall payoffs to Pavlov∗ for different starting points in the cycle, we
have  EDC = T + δEDD

EDD = P + δECD

ECD = S + δEDC

from which we solve

(3) EDC =
T + δP + δ2S

1− δ3

Pavlov∗×Pavlov∗ gives (D×D) in the first round followed by a (C×C)-cycle.
With EDD and ECC denoting the overall payoffs to Pavlov∗ for different starting
points, we have {

EDD = P + δECC

ECC = R + δECC

from which we solve

(4) EDD = P +
δR

1− δ

For the overall game we collect the payoffs (1)-(4) in the payoff matrix:

IPD TFT Pavlov∗

TFT R
1−δ , R

1−δ
S+δP+δ2T

1−δ3 , T+δP+δ2S
1−δ3

Pavlov∗ T+δP+δ2S
1−δ3 , S+δP+δ2T

1−δ3 P + δR
1−δ , P + δR

1−δ

We conclude that TFT is an ESS if

R

1− δ
>
T + δP + δ2S

1− δ3
and that Pavlov is an ESS if

P +
δR

1− δ
>
S + δP + δ2T

1− δ3
One readily shows that TFT is an ESS for sufficiently large δ ∈ (0, 1), i.e., if the
number of rounds tends to be high. I’m not entirely sure, but I think that Pavlov∗

is always an ESS against TFT. This need no longer be true, however, if we consider
additional strategies which may turn out to be better.

32. Now that we know how to calculate payoffs in the IPD, let’s do a little
tournament in the style of Axelrod & Hamilton (Science (1981) 211, 1390-1396):
we play allD (the champion of the IPD with a fixed number of rounds) against
TFT.
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TFT×TFT gets immediately in a (C×C)-cycle, and the overall expected payoff
ECC to TFT against TFT (as calculated previously) is

ECC =
R

1− δ

TFT×allD gives (C×D) in the first round followed by a (D×D)-cycle. The overall
payoff when starting with (C×D) is calculated as illustrated in the previous section
and turns out to be

ECD = S +
δR

1− δ

allD×TFT gives (D×C) in the first round followed by a (D×D)-cycle. The overall
payoff when starting with (D×C) is

ECD = T +
δR

1− δ

allD×allD immediately settles down in a (D×D)-cycle, and so the overall payoff
to allD against allD is

ECC =
P

1− δ

For the payoff matrix of the IPD with strategies TFT and allD we thus have

IPD TFT allD

TFT R
1−δ , R

1−δ S + δP
1−δ , T + δP

1−δ
allD T + δP

1−δ , S + δP
1−δ

P
1−δ , P

1−δ

TFT is an ESS whenever R
1−δ > T + δP

1−δ , i.e., whenever 1 − R−P
T

< δ < 1. In
other words, TFT is an ESS against allD if δ is large and the game, on average,
continues for many rounds. AllD is an ESS whenever P

1−δ > S+ δP
1−δ , i.e., whenever

P > S, which, by assumption, is always true.

33. Normally, allC against allD is an all-time looser. But suppose that we equip
allC with the rule “Quit whenever you receive the sucker’s payoff S”, and denote
this new variant allC∗. Like TFT, allC∗ has a means of punishing a defector, not
by reciprocaying the defection, but by simply quitting the game. An (allC∗×allC∗)-
contest lasts an average of (1− δ)−1 rounds, as does a (allD×allD)-contest, but a
(allC∗×allD)-contest lasts only one round. The payoff matrix is

IPD allC∗ allD

allC∗ R
1−δ , R

1−δ S , T

allD T , S P
1−δ , P

1−δ
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One readily sees that allD against allC∗ is always an ESS, and allC∗ is an ESS
against allD whenever R

1−δ > T , i.e., whenever 1 − R
T
< δ < 1, i.e., whenever the

average number of rounds is sufficiently high.


