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17. An evolutionarily stable strategy (ESS) is a strategy such that, if adopted by
a sufficiently large fraction of the population, then no other strategy can invade,
i.e., increase in frequency.

We have seen that if the opponent of a player is selected randomly from the
population, then x is evolutionarily stable, if and only if for every x′ 6= x we
have

π1(x
′, x) < π1(x, x)

or
π1(x

′, x) = π1(x, x) and π1(x
′, x′) < π1(x, x

′)

commonly referred to as respectively the first and second ESS conditions.

For example, consider the Prisoner’s Dilemma with payoff matrix

C D
C R, R S, T
D T , S P , P

with T > R > P > S. Then

π1(C,D) = S < P = π1(D,D)

which satisfies the first ESS condition, and so D is an ESS. However,

π1(D,C) = T > R = π1(C,C)

which violates both ESS conditions, and so C is not an ESS.

18. The ESS is a special kind of Nash equilibrium, and therefore the Bishop-
Cannings theorem applies: if x is an ESS, then π1(x

′, x) = π1(x, x) for every pure
strategy x′ in the support of x.

We use the Bishop-Cannings theorem to find possible mixed ESSs. For example,
consider the question Who takes care of the kids? There are two strategies: stay (S)
and run (R). A parent who stays contributes to the cost of protecting the brood
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and feeding the hatchlings. If both parents stay, the costs are equally divided.
However, a parent who runs away has none of these costs, while the one who stays
pays all. If both parents run away, the offspring does not survive.

Let C be the total cost of raising the offspring, and let V be the value of the
offspring (in terms of ‘fitness’) per breeding pair. The payoff matrix then is

S R
S 1

2
V − 1

2
C , 1

2
V − 1

2
C 1

2
V − C , 1

2
V

R 1
2
V , 1

2
V − C 0 , 0

We further assume that V > 2C so that there is no pure ESS. To see whether
there is a mixed ESS, write x = (p, 1 − p) where p ∈ (0, 1) is the probability of
staying. Applying the Bishops-Cannings theorem we get{

π1(S, x) = p
(
1
2
V − 1

2
C
)

+ (1− p)
(
1
2
V − C

)
= π1(x, x)

π1(R, x) = p 1
2
V + (1− p) 0 = π1(x, x)

and so

p
(1

2
V − 1

2
C
)

+ (1− p)
(1

2
V − C

)
= p

1

2
V

from which we find

p =
V − 2C

V − C
∈ (0, 1)

But is x = (p, 1− p) an ESS? By construction (i.e., how we calculated p) the first
ESS condition does not hold, and so we have to check the second condition. To
this end the following proposition is quite useful:

Proposition. For the second ESS condition to hold it is necessary and sufficient
that π1(S, S) < π1(x, S) and π1(R,R) < π1(x,R). In other words, we only have to
check that the second ESS condition holds for pure strategies. �

The proof is left as an exercise. Applying the proposition to x = (p, 1 − p) with
p = (V − 2C)/(V − C) gives

π1(S, S)− π1(x, S) = − C2

2(V − C)
< 0

and

π1(R,R)− π1(x,R) = −p
(

1

2
V − C

)
< 0

and so x is an ESS indeed.

19. Every two-person game with finitely many strategies has a Nash equilibrium
if mixed strategies are allowed. Does a similar thing also hold for the ESS? The
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answer is no, because the ESS is a stronger concept than the Nash equilibrium:
every ESS corresponds to a Nash equilibrium, but the reverse is not true, be-
cause the definition of an ESS is more restrictive. However, we have the following
result:

Proposition. Every two-person game with two pure strategies and payoff ma-
trix

x1 x2

x1 a, a b, c
x2 c, b d, d

has an ESS if mixed strategies are allowed and a 6= c and d 6= b.

Proof. If a > c, then x1 is an ESS, and if d > b, then x2 is and ESS. Now suppose
that a < c and d < b. Then from the Bishop-Cannings theorem we find that
x = (p, 1− p) with

p =
b− d

c− a+ b− d
∈ (0, 1)

is a candidate-ESS. Again by construction the first ESS condition fails, and so we
check the second condition:

π1(x1, x1)− π1(x, x1) = − (c− a)2

c− a+ b− d
< 0

and

π1(x2, x2)− π1(x, x2) = − (b− d)2

c− a+ b− d
< 0

Conclusion: x is an ESS indeed. �

What about games with more than two pure strategies? Consider the Rock-Paper-
Scissors game with the payoff matrix

R P S
R 0 , 0 -1 , 1 1 , -1
P 1 , -1 0 , 0 -1 , 1
S -1 , 1 1 , -1 0 , 0

We have seen that x = (1
3
, 1
3
, 1
3
) corresponds to a Nash equilibrium. Is it also an

ESS? The first ESS condition fails, and the second ESS condition fails too:

π1(R,R)− π1(x,R) = 0

and so x is not an ESS.
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20. The following proposition gives a necessary condition for the existence of a
mixed ESS with a given support:

Proposition. (a) If there exists a mixed ESS x ∈ Rn with support supp(x) =
{xi1 , . . . , xim} for m ≤ n, then necessarily

(∗) π1(xik , xik)− π1(xik , xik+1
)− π1(xik+1

, xik) + π1(xik+1
, xik+1

) < 0

for k = 1, . . . ,m − 1, and where the ordering of the xik is fixed but otherwise
arbitrary. (b) If x ∈ Rn is a mixed strategy such that π1(x

′, x) = π1(x, x) for all
x′ in the support of x and π1(x

′, x) < π1(x, x) for all x‘ not in the support of x,
then x is an ESS whenever (∗) is satisfied.

Proof. Without loss of generality we assume that xik = xk for all k. Define the
matrix

A
def
=



π1(xi1 , xi1) . . . π1(xi1 , xim) 0 . . . 0
...

...
...

...
π1(xim , xi1) . . . π1(xim , xim) 0 . . . 0

0 . . . 0 0 . . . 0
...

...
...

...
0 . . . 0 0 . . . 0


∈ Rn×n

For arbitrary mixed strategies x and y with support in {xi1 , . . . , xim}, we have

π1(y, x) = yTA x

where the superscript T denotes the transpose. If x is a mixed ESS with support
{xi1 , . . . , xim}, then by the second ESS condition

yTA x = xTA x & yTA y < xTA y

for all y 6= x with a support in {xi1 , . . . , xim}. Taking the transpose, we get the
equivalent conditions

xTATy = xTATx & yTATy < yTATx

Combining these expressions, we find

yT(A+ AT) y − yT(A+ AT)x− xT(A+ AT) y + xT(A+ AT)x < 0

which can be rewritten as

(y − x)T(A+ AT) (y − x) < 0

or, equivalently, as

∆T(A+ AT) ∆ < 0
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for every non-zero ∆ ∈ D def
= {(∆1, . . . ,∆m, 0, . . . , 0) ∈ Rn :

∑m
i=1 ∆i = 0}. The

set D is an m-dimensional linear subspace of Rn for which we can choose a basis:
{ei − ei+1}m−1i=1 where ei is the ith unit vector. Hence, the condition

∆T(A+ AT) ∆ < 0 ∀ ∆ ∈ D¬{0}
is equivalent to

(ei − ei+1)
T(A+ AT) (ei − ei+1) < 0

for i = 1, . . . ,m− 1, which, using the definition of the matrix A is easily shown to
be equivalent to

π1(xik , xik)− π1(xik , xik+1
)− π1(xik+1

, xik) + π1(xik+1
, xik+1

) < 0

for k = 1, . . . ,m− 1. This proves the first part of the proposition, i.e., the above
is a necessary condition for the existence of an ESS with support {xi1 , . . . , xim}. If
m = n, then the condition is not only necessary but also sufficient for the existence
of an ESS with full support, because all steps above are reversible. �

For example, consider the modified Rock-Paper-Scissors game with payoff matrix

R P S
R -ε , -ε -1 , 1 1 , -1
P 1 , -1 -ε , -ε -1 , 1
S -1 , 1 1 , -1 -ε , -ε

with ε > 0. We have

π1(R,R)− π1(R,P)− π1(P,R) + π1(P,P) < 0
π1(P,P)− π1(P, S)− π1(S,P) + π1(S, S) < 0

and so there exists a mixed ESS with full support.

21. The following is a handy little proposition that will save you the trouble of
having to check for the existence of certain ESSs.

Proposition. If a game has two ESSs, then the support of the one cannot be a
subset of the other.

Proof. Let x̂1 and x̂2 be two evolutionarily stable strategies. To reach a contra-
diction, suppose that the support of x̂1 is a subset of the support of x̂2. Then, by
the Bishop-Cannings theorem, π1(x̂1, x̂2) = π1(x̂2, x̂2), and so the first ESS condi-
tion fails for x̂2. Hence, the second ESS condition should hold, i.e., π1(x̂1, x̂1) <
π1(x̂2, x̂1). But this contradicts that x̂1, too, is an ESS. �

For example, in the Prisoner’s Dilemma the strategy D is evolutionarily stable,
and therefore there cannot be a mixed ESS as well. Also, whenever in a given
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game there is an ESS with full support, then that ESS is the only one possible for
that game. For example, the modified Rock-Paper-Scissors game in the previous
section has an ESS with full support, which necessarily is the only ESS of the game.

22. As a sort of intermezzo, to get an idea of another of population dynamical
embedding of the notion of ESS, we have a brief look at a kind of game situation
called “playing the field” where individuals are not involved in pair-wise contest
but instead interact with the population as a whole.

The example we give is that of the evolution of the sex ratio: this is the ratio of
the expected numbers of sons and daughters produced per female. In most species
this ratio is close to one, but why is this so?

Mammals have the XY sex-determination system which more or less predisposes
them to a sex ratio close to one, but notable exceptions are know, e.g., in chim-
panzees (Boesch & Boesch-Achermann (2000) Oxford University Press, page 86),
both towards a lower and towards a higher sex ratio.

Other sex-determination systems are more flexible, e.g., temperature sex-determination
(most prominently in reptiles) or change of sex as in sequential hermaphrodites,
which is quite common in fish and snails.

The upshot is that the sex-determination system in itself provides insufficient
explanation for sex ratios observed in nature. Here we attempt to give a simple
evolutionary explanation.

Let n and n′ denote the population densities of the resident and the invader strate-
gies. As strategies, however, we do not take the sex ratios themselves but rather
the proportions x and x′ of sons among the offspring; the sex ratios then are
x/(1 − x) and x′/(1 − x′). We further write N = n + n′ for the total population
density and ε = n′/N for the fraction of invaders.

We assume that all females are mated. In this way the ‘fitness’ of a given sex ratio
strategy only depends on the success of males in finding a mate. We also assume
that the expected number of children per female is independent of the sex ratio
strategy. As a measure of ‘fitness’ of the strategy x′, we therefore take the number
g1(x

′, x, ε) of grandchildren produced per female.

Let λ denote the expected number of children per female. The number of daughters
of a female with strategy x′ then is (1 − x′)λ. Each of these daughters produces
another λ children, and so the number of grandchildren produced via the daughters
is (1− x′)λ2.

The number of grandchildren produced via the sons is equal to the number of sons
(i.e., x′λ) times the number of females available per son (i.e., the total number of
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females in the population divided by the total number of males) times the number
of children per female (i.e., λ), which is

x′λ2
(1− ε)(1− x)Nλ+ ε(1− x′)Nλ

(1− ε)xNλ+ εx′Nλ

The total number g1(x
′, x; ε) of grandchildren produced via sons and daughters

then is

g1(x
′, x; ε) = (1− x′)λ2 + x′λ2

(1− ε)(1− x) + ε(1− x′)
(1− ε)x+ εx′

Likewise, for the number of grandchildren produced per female with strategy x we
find The total number g1(x

′, x; ε) of grandchildren produced via sons and daughters
then is

g2(x
′, x; ε) = (1− x)λ2 + xλ2

(1− ε)(1− x) + ε(1− x′)
(1− ε)x+ εx′

Embedding the ESS definition into the present context gives that a sex ratio strat-
egy x is evolutionarily stable if, and only if for every x′ 6= x there exists an ε0 > 0
such that g1(x

′, x; ε) < g2(x
′, x; ε) whenever ε < ε0.

Expanding into terms of different order in ε, we get

g1(x
′, x; ε)− g2(x, x; ε) = −λ2

(
1− 2x+ 2x′ − x′

x

)
− λ2 (x− x′)2

x2
ε+ O(ε2)

It follows that x is evolutionarily stable if for every x′ 6= x

1− 2x+ 2x′ − x′

x
> 0

or

1− 2x+ 2x′ − x′

x
= 0 &

(x− x′)2

x2
> 0

Only x = 1/2 satisfies the conditions, i.e., the first condition fails, but the second
condition is satisfied. Conclusion: x = 1/2 (which corresponds to a sex ration of
one) is an ESS.

(Note: an earlier version of this example was wrong. This is the correct ver-
sion.)


