EVOLUTION AND THE THEORY OF GAMES

STEFAN GERITZ, HELSINKI, 2011

Exercises 18-11-2011

7. Show that, in a game with two pure strategies, the ESS conditions are equivalent to

$$\pi_1(x',x) < \pi_1(x,x)$$

or

$$\pi_1(x', x) = \pi_1(x, x)$$
 and $\pi_1(x', x') < \pi_1(x, x')$

for every *pure* strategy $x' \neq x$.

8. Calculate all evolutionarily stable strategies (pure and mixed) for the Hawk-Dove game

	Н	D
Н	$\frac{1}{2}R - \frac{1}{2}C, \ \frac{1}{2}R - \frac{1}{2}C$	R, 0
D	0, R	$\frac{1}{2}R, \frac{1}{2}R$

for (a) V > C, (b) V = C and (c) V < C.

9. Extend the Hawk-Dove game with a third strategy called "Retaliator" (R) who plays Dove against Dove but Hawk against Hawk, and also Hawk against itself. Give the payoff matrix of the Hawk-Dove-Retaliator game and calculate all ESSs for (a) V > C and (c) V < C.

10. Extend the Hawk-Dove game with a third strategy called "Bully" (B) who plays Hawk against Dove but Dove against Hawk, and also Dove against itself. Give the payoff matrix of the Hawk-Dove-Bully game and calculate all ESSs for (a) V > C and (c) V < C.

11. Formulate and analyze the Retaliator-Bully game.

Continued on next page ightarrow

	R	Р	S
R	$-\varepsilon$, $-\varepsilon$	-1, 1	1,-1
Р	1,-1	-ε , -ε	-1, 1
S	-1, 1	1,-1	$-\varepsilon$, $-\varepsilon$

for $\varepsilon > 0$. Show that $x = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is an ESS. Are there any other ESSs?