INVARIANT SUBSPACE PROBLEM: SUBNORMAL OPERATORS

AbSTRACT. Subnormal operators have nontrivial invariant subspaces. Why? We will take a look at Thomson [6].

1. Introduction

It will be assumed that Hilbert spaces are complex and subspaces are closed. Hilbert spaces will be denoted by \mathcal{H} and \mathcal{K}. Notation $\mathcal{H} \leq \mathcal{K}$ will mean that \mathcal{H} is a subspace of \mathcal{K}. The set of all bounded linear operators $\mathcal{H} \rightarrow \mathcal{H}$ will be denoted by $\mathcal{B}(\mathcal{H})$.

An invariant subspace of $A \in \mathcal{B}(\mathcal{H})$ is a subspace $\mathcal{M} \leq \mathcal{H}$ such that $A \mathcal{M} \subseteq \mathcal{M}$. It is called a nontrivial invariant subspace (n.i.s.) of A if also $\mathcal{M} \neq\{0\}$ and $\mathcal{M} \neq \mathcal{H}$. The adjoint of an operator $A \in \mathcal{B}(\mathcal{H})$ is the unique operator $\mathcal{A}^{*} \in \mathcal{B}(\mathcal{H})$ satisfying $(A x \mid y)=\left(x \mid A^{*} y\right)$ for all $x, y \in \mathcal{H}$.

Definition 1.1. Operator $\mathrm{N} \in \mathcal{B}(\mathcal{H})$ is called normal if $\mathrm{N}^{*} \mathrm{~N}=\mathrm{NN}^{*}$. Operator $S \in \mathcal{B}(\mathcal{H})$ is called subnormal if there exists a Hilbert space \mathcal{K} and a normal operator $\mathrm{N} \in \mathcal{B}(\mathcal{K})$ such that $\mathcal{H} \leq \mathcal{K}$ and $\mathrm{S}=\mathrm{N} \mid \mathcal{H}$. Operator N is called a normal extension of S.

Obviously all normal operators are subnormal.
Examples 1.2. We assume that $\mathcal{H}=\ell^{2}$.
(1) Shift operator $S \in \mathcal{B}(\mathcal{H})$ given by $S\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$ is subnormal but not normal.
(2) Operator S^{*} given by $S^{*}\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$ is not subnormal.

Our goal is to examine James Thomson's short proof [6] of the following theorem originally proved by Scott Brown [3]:

Theorem (Brown [3]). If $\operatorname{dim}(\mathcal{H}) \geq 2$ and $S \in \mathcal{B}(\mathcal{H})$ is subnormal, then S has a nontrivial invariant subspace.

2. BACKGROUND

The set of all polynomial functions $\mathbb{C} \rightarrow \mathbb{C}$ will be denoted by P.
Definition 2.1. Operator $A \in \mathcal{B}(\mathcal{H})$ is called cyclic if for some $x \in \mathcal{H}$ we get

$$
\overline{\{p(A) x: p \in P\}}=\mathcal{H} .
$$

Vector x is called a cyclic vector of A.
Theorem 2.2. If $A \in \mathcal{B}(\mathcal{H})$ is not cyclic, then A has a n.i.s.
Proof. We can fix $x \in \mathcal{H} \backslash\{0\}$ and define $\mathcal{M}=\overline{\{p(A) x: p \in P\}}$. Since x is not a cyclic vector of A, the set \mathcal{M} is a nontrivial invariant subspace of A.

Definition 2.3. Operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ are called unitarily equivalent if there exists an isometric isomorphism $\mathrm{U}: \mathcal{H} \rightarrow \mathcal{K}$ such that $A=U^{-1} B U$. This will be denoted by $A \simeq B$.

Remark 2.4. Clearly \simeq is reflexive, symmetric, and transitive. Also, if \mathcal{M} is a nontrivial invariant subspace of A and $A \simeq B$ with isomorphism U, then $\mathrm{U} \mathcal{M}$ is a nontrivial invariant subspace of B.

Definition 2.5. Suppose that $t \in[1, \infty)$ and that $\mu: \operatorname{Bor}(\mathbb{C}) \rightarrow[0, \infty)$ is a compactly supported measure. We denote by $\mathrm{P}^{\mathrm{t}}(\mu)$ the closure of P in $L^{\mathrm{t}}(\mu)$. We also define an operator $S_{\mu}: P^{2}(\mu) \rightarrow P^{2}(\mu)$ by $S_{\mu} f(z)=z f(z) .{ }^{1}$

Theorem 2.6 (Bram [1]). If $S \in \mathcal{B}(\mathcal{H})$ is cyclic and subnormal, there exists a compactly supported measure $\mu: \operatorname{Bor}(\mathbb{C}) \rightarrow[0, \infty)$ such that $S \simeq S_{\mu}$.
Proof. Fix a cyclic vector $x \in \mathcal{H}$ and a normal extension $N \in \mathcal{B}(\mathcal{K})$ of S. By spectral theorem there exists a spectral measure $\mathrm{E}: \operatorname{Bor}(\mathbb{C}) \rightarrow \mathcal{B}(\mathcal{K})$ such that $\mathrm{N}=\int z \mathrm{dE}(z)$. We will now define

$$
\mu(B)=(E(B) x \mid x)
$$

for $B \in \operatorname{Bor}(\mathbb{C})$. For every polynomial $p \in P$ we now have

$$
(\mathfrak{p}(S) x \mid p(S) x)=\left(\mathfrak{p}(N)^{*} p(N) x \mid x\right)=\left(\left(\int|\mathfrak{p}|^{2} d E\right) x \mid x\right)=\int|\mathfrak{p}|^{2} d \mu
$$

Because P is dense in $P^{2}(\mu)$ and $\{p(S) x: p \in P\}$ is dense in \mathcal{H}, there exists an isometric isomorphism $U: P^{2}(\mu) \rightarrow \mathcal{H}$ such that $U p=p(S) x$ for all $p \in P$. If we set $\mathrm{q}(z)=z p(z)$, we also see that

$$
\mathrm{US}_{\mu} \mathrm{p}=\mathrm{Uq}=\mathrm{q}(\mathrm{~S}) \mathrm{x}=\mathrm{Sp}(\mathrm{~S}) \mathrm{x}=\mathrm{SUp} .
$$

Therefore US $_{\mu}=S U$, which implies $S_{\mu}=U^{-1}$ SU. Thus $S_{\mu} \simeq S$.

[^0]
3. Brown's Theorem

Lebesgue area measure on \mathbb{C} is denoted by m_{2}. The space of all compactly supported functions $f: \mathbb{C} \rightarrow \mathbb{C}$ with continuous partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ is denoted by $C_{c}^{1}(\mathbb{C})$. Cauchy-Riemann operator $\bar{\partial}$ is defined by

$$
\bar{\partial} f=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
$$

Lemma 3.1 (Cauchy). If $f \in C_{c}^{1}(\mathbb{C})$ and $\lambda \in \mathbb{C}$, then

$$
f(\lambda)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial} f(z)}{z-\lambda} \mathrm{dm}_{2}(z) .
$$

Proof. See Rudin [5], Lemma 20.3. [Hint: $\bar{\partial}=\frac{1}{2} \mathrm{e}^{\mathrm{i} \theta}\left(\frac{\partial}{\partial \mathrm{r}}+\frac{\mathrm{i}}{\mathrm{r}} \frac{\partial}{\partial \theta}\right)$.]
We will now fix a compactly supported measure $\mu: \operatorname{Bor}(\mathbb{C}) \rightarrow[0, \infty)$.
Lemma 3.2. For every $g \in L^{3 / 2}(\mu) \backslash\{0\}$ there is $\lambda \in \mathbb{C}$ such that $\mu(\{\lambda\})=0$,

$$
\int\left|\frac{g(z)}{z-\lambda}\right|^{3 / 2} d \mu(z)<\infty,
$$

and

$$
\int \frac{g(z)}{z-\lambda} d \mu(z) \neq 0 .
$$

Proof. ([4], [2]) We will temporarily set $a / 0=0$ for all $a \in \mathbb{C}$. Fix $R>0$ such that $\operatorname{supp}(\mu) \subseteq \mathbb{D}(0, R)$. For every $r>0$ we have, by Fubini's theorem,

$$
\begin{aligned}
\int_{\mathbb{D}(0, r)} \int\left|\frac{g(z)}{z-\lambda}\right|^{3 / 2} \mathrm{~d} \mu(z) \mathrm{dm}_{2}(\lambda) & =\int|g(z)|^{3 / 2} \int_{\mathbb{D}(0, r)}|z-\lambda|^{-3 / 2} \mathrm{dm}_{2}(\lambda) \mathrm{d} \mu(z) \\
& \leq \int_{\mathbb{D}(0, r+R)}|\lambda|^{-3 / 2} \mathrm{dm}_{2}(\lambda) \int|g|^{3 / 2} \mathrm{~d} \mu \\
& =4 \pi(\mathrm{r}+\mathrm{R})^{1 / 2}\|g\|_{3 / 2}^{3 / 2}<\infty .
\end{aligned}
$$

Thus $\int\left|\frac{\mathfrak{g}(z)}{z-\lambda}\right|^{3 / 2} \mathrm{~d} \mu(z)<\infty$ for m_{2} almost every $\lambda \in \mathbb{C}$. Because $\mu(\{\lambda\}) \neq 0$ holds only for countably many $\lambda \in \mathbb{C}$, we can abandon our temporary adjustment and conclude that for m_{2} almost every $\lambda \in \mathbb{C}$ we have $\mu(\{\lambda\})=0$ and $\int\left|\frac{g(z)}{z-\lambda}\right|^{3 / 2} \mathrm{~d} \mu(z)<\infty$.

We will now assume that $\int \frac{g(z)}{z-\lambda} d \mu(z)=0$ for \mathfrak{m}_{2} almost every $\lambda \in \mathbb{C}$. It suffices to show that this leads to a contradiction. Suppose that $f \in C_{c}^{1}(\mathbb{C})$. Previous lemma shows that $f(z)=\frac{1}{\pi} \int \frac{\bar{\partial} f(\lambda)}{z-\lambda} \mathrm{dm}_{2}(\lambda)$ for all $z \in \mathbb{C}$. Because

$$
\iint\left|\frac{\bar{\partial} f(\lambda)}{z-\lambda} g(z)\right| \operatorname{dm}_{3}(\lambda) d \mu(z)<\infty
$$

we have, by using Fubini's theorem, that

$$
\begin{aligned}
\int f g d \mu & =\int\left(\frac{1}{\pi} \int \frac{\bar{\partial} f(\lambda)}{z-\lambda} d m_{2}(\lambda)\right) g(z) d \mu(z) \\
& =\frac{1}{\pi} \int \bar{\partial} f(\lambda)\left(\int \frac{g(z)}{z-\lambda} d \mu(z)\right) d m_{2}(\lambda) \\
& =0 .
\end{aligned}
$$

Since $C_{c}^{1}(\mathbb{C})$ is dense in $L^{3}(\mu)$, we have $g=0 .{ }^{2}$ This is a contradiction.
The proofs of the following theorems are from J. E. Thomson's article [6].
Theorem 3.3. If $P^{2}(\mu) \neq L^{2}(\mu)$, we can find a point $\lambda \in \mathbb{C}$ and vectors $x \in P^{2}(\mu)$ and $y \in L^{2}(\mu)$ such that

$$
p(\lambda)=(p x \mid y)
$$

for all $\mathrm{p} \in \mathrm{P}$ and $\mu(\{\lambda\})=0$.
Proof. ([6]) By assumption there exists $g \in L^{2}(\mu) \backslash\{0\}$ such that $\bar{g} \perp P^{2}(\mu)$. Because $g \in L^{3 / 2}(\mu) \backslash\{0\}$, we can choose λ as in Lemma 3.2. By scaling g we can assume that

$$
\int \frac{g(z)}{z-\lambda} d \mu(z)=1 .
$$

Let $\phi \in\left(\mathrm{P}^{3}(\mu)\right)^{*}$ be the functional given by

$$
\phi(f)=\int f(z) \frac{g(z)}{z-\lambda} d \mu(z) .
$$

Suppose that $p \in P$. If we set $f(z)=p(z)-p(\lambda)$, we can find $q \in P$ such that $f(z)=(z-\lambda) q(z)$. Because $\phi(1)=1$ and $\bar{g} \perp P^{2}(\mu)$, we have

$$
\phi(\mathfrak{p})-p(\lambda)=\phi(f)=\int(z-\lambda) q(z) \frac{g(z)}{z-\lambda} d \mu(z)=(q \mid \bar{g})=0 .
$$

Thus $p(\lambda)=\phi(p)$ for all $p \in P$.
By Hahn-Banach theorem there is $h \in L^{3 / 2}(\mu)$ such that $\|h\|_{3 / 2}=\|\phi\|$ and $\phi(f)=\int$ fh $d \mu$ for all $f \in P^{3}(\mu)$. We will now factorize h into $x \bar{y}$.

Because $L^{3}(\mu)$ is reflexive, Banach-Alaoglu theorem implies that the closed unit ball of $\mathrm{P}^{3}(\mu)$ is weakly compact. Since ϕ is weakly continuous, there exists $x \in P^{3}(\mu) \subseteq P^{2}(\mu)$ such that $\|x\|_{3}=1$ and $\phi(x)=\|\phi\|$. Using Hölder's inequality we now have

$$
\|\mathrm{h}\|_{3 / 2}=\|\phi\|=\phi(x)=\int x h \mathrm{~d} \mu \leq \int|x||\mathrm{h}| \mathrm{d} \mu \leq\|x\|_{3}\|\mathrm{~h}\|_{3 / 2}=\|\mathrm{h}\|_{3 / 2} .
$$

Because of equality in Hölder's inequality, there exists $\alpha>0$ such that ${ }^{3}$

$$
|x|^{3}=\alpha|h|^{3 / 2} .
$$

[^1]Therefore $|x|^{2}=\alpha^{2 / 3}|h|$. Let $y: \mathbb{C} \rightarrow \mathbb{C}$ be such that

$$
y(z)= \begin{cases}\overline{h(z) / x(z)} & \text { if } x(z) \neq 0 \\ 0 & \text { if } x(z)=0 .\end{cases}
$$

We now have $y \in L^{2}(\mu)$ because $h \in L^{3 / 2}(\mu) \subseteq L^{1}(\mu)$ and

$$
\int|y|^{2} d \mu=\int \alpha^{-2 / 3}|h| d \mu<\infty .
$$

Moreover $h=x \bar{y}$. Summing all up, we have proved that

$$
p(\lambda)=\phi(p)=\int p h d \mu=\int p x \bar{y} d \mu=(p x \mid y)
$$

for every $p \in P$.
Theorem 3.4 (Brown [3]). If $\operatorname{dim}(\mathcal{H}) \geq 2$ and $\mathrm{S} \in \mathcal{B}(\mathcal{H})$ is subnormal, then S has a nontrivial invariant subspace.

Proof. ([6]) By Theorem 2.2. we can assume that S is cyclic. Bram's theorem now gives us a measure μ such that $S \simeq S_{\mu}$, so it suffices to consider S_{μ}.
$\mathrm{P}^{2}(\mu)=\mathrm{L}^{2}(\mu)$ Because $\operatorname{dim}(\mathcal{H}) \geq 2$, we can choose $\mathrm{B} \in \operatorname{Bor}(\mathbb{C})$ such that $\mu(\mathrm{B})>0$ and $\mu(\mathbb{C} \backslash \mathrm{B})>0$. Thus S_{μ} has a nontrivial invariant subspace

$$
\mathcal{M}=\left\{\chi_{B} f: f \in L^{2}(\mu)\right\} .
$$

$\mathrm{P}^{2}(\mu) \neq \mathrm{L}^{2}(\mu)$ Choose λ, x, and y as in Theorem 3.3. and define

$$
\mathcal{M}=\overline{\{p x: p \in P \text { and } p(\lambda)=0\}}
$$

Fix $p \in P$ such that $p(\lambda)=0$. For polynomial $q(z)=z p(z)$ we also have $q(\lambda)=0$, so $S_{\mu} p x=q x \in \mathcal{M}$. Thus \mathcal{M} is an invariant subspace of S_{μ}. Because $(x \mid y)=1$ and $(p x \mid y)=0$ whenever $p(\lambda)=0$, we have $x \notin \mathcal{M}$. Therefore $\mathcal{M} \neq P^{2}(\mu)$. Because $x \neq 0$ and $\mu(\{\lambda\})=0$, we have $p x \neq 0$ for the particular polynomial $p(z)=z-\lambda$. Hence $\mathcal{M} \neq\{0\}$.

The constructions made in the last two proofs are related to the so called bounded point evaluation problem. For further reading see Thomson [7] and Conway [4], and search for J. E. Brennan's contributions.

References

[1] J. Bram, Subnormal operators. Duke Math. J., Vol. 22, 1955, pp. 75-94.
[2] J. E. Brennan, Invariant subspaces and rational approximation. J. Funct. Anal., Vol. 7, 1971, pp. 285-310.
[3] S. W. Brown, Some invariant subspaces for subnormal operators. Integral Equations and Operator Theory Vol. 1, 1978, pp. 310-333.
[4] J. B. Conway, Subnormal operators. Pitman, Boston.
[5] W. Rudin, Real and Complex Analysis. McGraw-Hill, 1987.
[6] J. E. Thomson, Invariant subspaces for algebras of subnormal operators. Proceedings of the American Mathematical Society, Vol. 96, No. 3, 1986, pp. 462-464.
[7] J. E. Thomson, Approximation in the mean by polynomials. Ann. of Math, Vol. 133, No. 3, 1991, pp. 477-507.

[^0]: ${ }^{1}$ Here $\operatorname{Bor}(\mathbb{C})$ denotes the collection of all Borel subsets of \mathbb{C}. It should be noted that $\mathrm{P}^{\mathrm{t}}(\mu)$ is actually the closure of the equivalence classes of polynomials with respect to μ. That is, $\mathrm{P}^{\mathrm{t}}(\mu)=\overline{\left\{[\mathrm{p}]_{\mu}: \mathrm{p} \in \mathrm{P}\right\}^{\mathrm{L}^{\mathrm{t}}(\mu)}}$, where $[\mathrm{p}]_{\mu}$ is the set of all Borel functions $\mathrm{f}: \mathbb{C} \rightarrow \mathbb{C}$ such that f and p are same μ almost everywhere. It can happen that $p \neq q$ but $[p]_{\mu}=[q]_{\mu}$. Beware, we are careless about this distinction!

[^1]: ${ }^{2}$ By using mollifiers we can show that $C_{c}^{1}(\mathbb{C})$ is dense in $C_{c}(\mathbb{C})$ with $\|\cdot\|_{\infty}$-norm. Now combine this to the fact that $\mathrm{C}_{\mathcal{c}}(\mathbb{C})$ is dense in $\mathrm{L}^{3}(\mathbb{C})$. (See Rudin [5], Thm. 3.14.)
 ${ }^{3}$ This holds for equivalence classes. We will choose representative functions for h and x, so that this will hold exactly.

