INVARIANT SUBSPACE PROBLEM: SUBNORMAL OPERATORS

ABSTRACT. Subnormal operators have nontrivial invariant subspaces.
Why? We will take a look at Thomson [6].

1. INTRODUCTION

It will be assumed that Hilbert spaces are complex and subspaces are
closed. Hilbert spaces will be denoted by H and K. Notation H < K will
mean that H is a subspace of . The set of all bounded linear operators
H — 'H will be denoted by B(H).

An invariant subspace of A € B(H) is a subspace M < H such that
AM C M. It is called a nontrivial invariant subspace (n.i.s.) of A if also
M # {0} and M # H. The adjoint of an operator A € B(H) is the unique
operator A* € B(H) satisfying (Ax|y) = (x| A*y) for all x,y € H.

Definition 1.1. Operator N € B(H) is called normal if N*N = NN*. Op-
erator S € B(H) is called subnormal if there exists a Hilbert space K and a
normal operator N € B(K) such that H < K and S = N|H. Operator N is
called a normal extension of S.

Obviously all normal operators are subnormal.

Examples 1.2. We assume that H = (2.

(1) Shift operator S € B(H) given by S(x1,x2,...) = (0,x1,%x2,...) is
subnormal but not normal.
(2) Operator S* given by $*(x1,x2,...) = (x2,%3,...) is not subnormal.

Our goal is to examine James Thomson'’s short proof [6] of the following
theorem originally proved by Scott Brown [3]:

Theorem (Brown [3]). If dim(H) > 2 and S € B(H) is subnormal, then S
has a nontrivial invariant subspace.



2. BACKGROUND

The set of all polynomial functions C — C will be denoted by P.

Definition 2.1. Operator A € B(H) is called cyclic if for some x € H we get
{p(A)x:p € P} =H.

Vector x is called a cyclic vector of A.

Theorem 2.2. If A € B('H) is not cyclic, then A has a n.i.s.

Proof. We can fix x € H~ {0} and define M = {p(A)x: p € P}. Since x is not
a cyclic vector of A, the set M is a nontrivial invariant subspace of A. [

Definition 2.3. Operators A € B(H) and B € B(K) are called unitarily
equivalent if there exists an isometric isomorphism U : H — K such that
A = U~'BU. This will be denoted by A ~ B.

Remark 2.4. Clearly ~ is reflexive, symmetric, and transitive. Also, if M is
a nontrivial invariant subspace of A and A ~ B with isomorphism U, then
UM is a nontrivial invariant subspace of B.

Definition 2.5. Suppose that t € [1,00) and that p : Bor(C) — [0,00) is
a compactly supported measure. We denote by P*(u) the closure of P in
L*(p). We also define an operator S, : P2(1) — P2(p) by S.f(z) = zf(z). 1

Theorem 2.6 (Bram [1]). If S € B(H) is cyclic and subnormal, there exists a
compactly supported measure p : Bor(C) — [0, 00) such thatS ~ §,,.

Proof. Fix a cyclic vector x € ‘H and a normal extension N € B(C) of S. By
spectral theorem there exists a spectral measure E : Bor(C) — B(K) such
that N = [z dE(z). We will now define

w(B) = (E(B)x|x)

for B € Bor(C). For every polynomial p € P we now have

(p(S)x p(S)x) = (P(N)P(N)x|x) = ((J ho|2dE> x x) — [ 2

Because P is dense in P?(u) and {p(S)x : p € P}is dense in H, there exists an
isometric isomorphism U : P?(1) — H such that Up = p(S)x for all p € P.
If we set q(z) = zp(z), we also see that

US,p =Uq = q(S)x = Sp(S)x = SUp.
Therefore US,, = SU, which implies S,, = U~'SU. Thus S,, ~ S. 0

'Here Bor(C) denotes the collection of all Borel subsets of C. It should be noted that
P*(n) is actually the closure of the equivalence classes of polynomials with respect to p.

t
That is, P* () = {[plu:p € P}L (u), where [p],, is the set of all Borel functions f : C — C
such that f and p are same p almost everywhere. It can happen that p # q but [p], = [q]..
Beware, we are careless about this distinction!
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3. BROWN’S THEOREM

Lebesgue area measure on C is denoted by m,. The space of all com-
pactly supported functions f : C — C with continuous partial derivatives
of and af is denoted by C!(C). Cauchy-Riemann operator 9 is defined by

ox
- 1 /of . of

Lemma 3.1 (Cauchy). Iff € Cl(C) and A € C, then

f(A) = —]J M) 4ms(a).

m)z—A
C

Proof. See Rudin [5], Lemma 20.3. [Hint: @ = Je'® (2 + 1.2 ] O
We will now fix a compactly supported measure p : Bor(C) — [0, c0).

Lemma 3.2. Forevery g € L3/2(u) ~ {0} there is A € C such that u({A\}) =

3/2
“z—%‘ H(z) < oo,

[ 22 ancz) 0,

and

Proof. ([4], [2]) We will temporarily set a/0 = 0 for all a € C. Fix R > 0
such that supp(p) € D(0, R). For every r > 0 we have, by Fubini’s theorem,

3/2
J “z)\‘ (2) dma(A) = Jg(z)lg‘/2 J z— A2 dmy(A) du(z)
D(O,r) D(0,r)
< J \A]_s/zdmz(?\)J]g\g/zdu
D(0,7+R)

3/2
=4m(r+R)"/? | g||3/3 < co.

3/2
Thus [ |%| / dp(z) < oo for m, almost every A € C. Because n({A}) # 0
holds only for countably many A € C, we can abandon our temporary
adjustment and conclude that for m; almost every A € C we have u({A}) =0

32
and [192”* dy(z) < co.
We will now assume that f 9(z) du( ) = 0 for m; almost every A € C. It
suffices to show that this leads to a Contradiction Suppose that f € C}(C).

af A) for all z € C. Because

Previous lemma shows that f(z

J“ 215_( ’d A)du(z) < oo,
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we have, by using Fubini’s theorem, that

[foan - J(; [ O g (7\)>9(Z)du(2)

IED ( | o) du(2)> dma(\)
= 0.

Since Cl((C) is dense in L3(1), we have g = 0. 2 This is a contradiction. [

The proofs of the following theorems are from J. E. Thomson’s article [6].

Theorem 3.3. If P2(n) # L?(n), we can find a point A € C and vectors
x € P?(n) andy € L?(n) such that
p(A) = (px|y)
forallp € P and u({A}) = 0.
Proof. ([6]) By assumption there exists g € L2(n) ~ {0} such that g L P%(p).

Because g € L3/2(u) \ {0}, we can choose A as in Lemma 3.2. By scaling g
we can assume that
J 9(2) du(z) =1.

z—A
Let ¢ € (P3(n))* be the functional given by
z
oi1) = [ 11225 au(z
Suppose that p € P. If we set f(z) = p(z) — p(A), we can find q € P such
that f(z) = (z— A)q(z). Because ¢(1) =1and g L P?(n), we have

du(z) = (qlg) = 0.

Thus p(A) = ¢(p) forall p € P.
By Hahn—Banach theorem there is h € L3/%(u) such that ||h/|5 2= 6]
and ¢(f) = [fhdpforall f € P3(1). We will now factorize h into x.
Because L3(u) is reflexive, Banach-Alaoglu theorem implies that the
closed unit ball of P3(n) is weakly compact. Since ¢ is weakly continu-
ous, there exists x € P3(n) € P?(p) such that ||[x||; = 1 and ¢(x) = [|¢]|.
Using Holder’s inequality we now have

Il 2 = 161 = 000 = [t < x| 0] < x5 Il = [l

Because of equality in Holder’s inequality, there exists & > 0 such that 3

x|® = o [h|*2.
2By using mollifiers we can show that C }(C) is dense in C.(C) with ||-|| oo -norm. Now
combine this to the fact that C. (C) is dense in L3(C). (See Rudin [5], Thm. 3.14.)
3This holds for equivalence classes. We will choose representative functions for h and x,
so that this will hold exactly.
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Therefore [x|? = x2/3|h|. Lety : C — C be such that

h(z)/x(z) ifx(z) #0
y(z) = { .
0 if x(z) = 0.

We now have y € L%(p) because h € L3/2(n) C L'(p) and

lezduz Jorz/ﬂh dp < oo,

Moreover h = xy. Summing all up, we have proved that

PN = b(p) =Jphduszxydu= (px|v)
for every p € P. O

Theorem 3.4 (Brown [3]). Ifdim(H) > 2 and S € B('H) is subnormal, then
S has a nontrivial invariant subspace.

Proof. ([6]) By Theorem 2.2. we can assume that S is cyclic. Bram’s theorem

now gives us a measure p such that S ~ S, so it suffices to consider S .

P2(u) = L?(n) | Because dim(H) > 2, we can choose B € Bor(C) such

that u(B) > 0 and u(C~B) > 0. Thus S, has a nontrivial invariant subspace
M = {xgf : f € L*(p)}.

P2(1) # L?(n) |Choose A, x, and y as in Theorem 3.3. and define

M ={px:p € Pand p(A) = 0}.

Fix p € P such that p(A\) = 0. For polynomial q(z) = zp(z) we also have
q(A) = 0,s0 Sypx = gx € M. Thus M is an invariant subspace of S,..
Because (x|y) = 1 and (px|y) = 0 whenever p(A) = 0, we have x € M.
Therefore M # P?(u). Because x # 0 and p({A}) = 0, we have px # 0 for
the particular polynomial p(z) = z — A. Hence M # {0}. O

The constructions made in the last two proofs are related to the so called
bounded point evaluation problem. For further reading see Thomson [7] and
Conway [4], and search for J. E. Brennan’s contributions.
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