INVARIANT SUBSPACE PROBLEM: SUBNORMAL OPERATORS

ABSTRACT. Subnormal operators have nontrivial invariant subspaces. Why? We will take a look at Thomson [6].

1. INTRODUCTION

It will be assumed that Hilbert spaces are complex and subspaces are closed. Hilbert spaces will be denoted by \mathcal{H} and \mathcal{K} . Notation $\mathcal{H} \leq \mathcal{K}$ will mean that \mathcal{H} is a subspace of \mathcal{K} . The set of all bounded linear operators $\mathcal{H} \rightarrow \mathcal{H}$ will be denoted by $\mathcal{B}(\mathcal{H})$.

An **invariant subspace** of $A \in \mathcal{B}(\mathcal{H})$ is a subspace $\mathcal{M} \leq \mathcal{H}$ such that $A\mathcal{M} \subseteq \mathcal{M}$. It is called a **nontrivial invariant subspace (n.i.s.)** of A if also $\mathcal{M} \neq \{0\}$ and $\mathcal{M} \neq \mathcal{H}$. The **adjoint** of an operator $A \in \mathcal{B}(\mathcal{H})$ is the unique operator $A^* \in \mathcal{B}(\mathcal{H})$ satisfying $(Ax|y) = (x|A^*y)$ for all $x, y \in \mathcal{H}$.

Definition 1.1. Operator $N \in \mathcal{B}(\mathcal{H})$ is called **normal** if $N^*N = NN^*$. Operator $S \in \mathcal{B}(\mathcal{H})$ is called **subnormal** if there exists a Hilbert space \mathcal{K} and a normal operator $N \in \mathcal{B}(\mathcal{K})$ such that $\mathcal{H} \leq \mathcal{K}$ and $S = N|\mathcal{H}$. Operator N is called a **normal extension** of S.

Obviously all normal operators are subnormal.

Examples 1.2. We assume that $\mathcal{H} = \ell^2$.

- (1) Shift operator $S \in \mathcal{B}(\mathcal{H})$ given by $S(x_1, x_2, ...) = (0, x_1, x_2, ...)$ is subnormal but not normal.
- (2) Operator S^{*} given by S^{*}(x_1, x_2, \ldots) = (x_2, x_3, \ldots) is not subnormal.

Our goal is to examine James Thomson's short proof [6] of the following theorem originally proved by Scott Brown [3]:

Theorem (Brown [3]). If dim(\mathcal{H}) \geq 2 and S $\in \mathcal{B}(\mathcal{H})$ is subnormal, then S has a nontrivial invariant subspace.

2. BACKGROUND

The set of all polynomial functions $\mathbb{C} \to \mathbb{C}$ will be denoted by P.

Definition 2.1. Operator $A \in \mathcal{B}(\mathcal{H})$ is called **cyclic** if for some $x \in \mathcal{H}$ we get

 $\overline{\{\mathfrak{p}(A)\mathfrak{x}:\mathfrak{p}\in\mathsf{P}\}}=\mathcal{H}.$

Vector x is called a **cyclic vector** of A.

Theorem 2.2. If $A \in \mathcal{B}(\mathcal{H})$ is not cyclic, then A has a n.i.s.

Proof. We can fix $x \in \mathcal{H} \setminus \{0\}$ and define $\mathcal{M} = \overline{\{p(A)x : p \in P\}}$. Since x is not a cyclic vector of A, the set \mathcal{M} is a nontrivial invariant subspace of A. \Box

Definition 2.3. Operators $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ are called **unitarily** equivalent if there exists an isometric isomorphism $U : \mathcal{H} \to \mathcal{K}$ such that $A = U^{-1}BU$. This will be denoted by $A \simeq B$.

Remark 2.4. Clearly \simeq is reflexive, symmetric, and transitive. Also, if \mathcal{M} is a nontrivial invariant subspace of A and A \simeq B with isomorphism U, then U \mathcal{M} is a nontrivial invariant subspace of B.

Definition 2.5. Suppose that $t \in [1, \infty)$ and that $\mu : Bor(\mathbb{C}) \to [0, \infty)$ is a compactly supported measure. We denote by $P^t(\mu)$ the closure of P in $L^t(\mu)$. We also define an operator $S_{\mu} : P^2(\mu) \to P^2(\mu)$ by $S_{\mu}f(z) = z f(z)$.¹

Theorem 2.6 (Bram [1]). If $S \in \mathcal{B}(\mathcal{H})$ is cyclic and subnormal, there exists a compactly supported measure μ : Bor(\mathbb{C}) \rightarrow [0, ∞) such that $S \simeq S_{\mu}$.

Proof. Fix a cyclic vector $x \in \mathcal{H}$ and a normal extension $N \in \mathcal{B}(\mathcal{K})$ of S. By spectral theorem there exists a spectral measure $E : Bor(\mathbb{C}) \to \mathcal{B}(\mathcal{K})$ such that $N = \int z \, dE(z)$. We will now define

$$\mu(\mathbf{B}) = (\mathbf{E}(\mathbf{B})\mathbf{x} \,|\, \mathbf{x})$$

for $B \in Bor(\mathbb{C})$. For every polynomial $p \in P$ we now have

$$(p(S)x|p(S)x) = (p(N)^*p(N)x|x) = \left(\left(\int |p|^2 dE\right)x \,\middle|\, x\right) = \int |p|^2 d\mu.$$

Because P is dense in $P^2(\mu)$ and $\{p(S)x : p \in P\}$ is dense in \mathcal{H} , there exists an isometric isomorphism $U : P^2(\mu) \to \mathcal{H}$ such that Up = p(S)x for all $p \in P$. If we set q(z) = zp(z), we also see that

$$US_{\mu}p = Uq = q(S)x = Sp(S)x = SUp.$$

Therefore $US_{\mu} = SU$, which implies $S_{\mu} = U^{-1}SU$. Thus $S_{\mu} \simeq S$.

¹Here Bor(\mathbb{C}) denotes the collection of all Borel subsets of \mathbb{C} . It should be noted that $P^{t}(\mu)$ is actually the closure of the equivalence classes of polynomials with respect to μ . That is, $P^{t}(\mu) = \overline{\{[p]_{\mu} : p \in P\}}^{L^{t}(\mu)}$, where $[p]_{\mu}$ is the set of all Borel functions $f : \mathbb{C} \to \mathbb{C}$ such that f and p are same μ almost everywhere. It can happen that $p \neq q$ but $[p]_{\mu} = [q]_{\mu}$. Beware, we are careless about this distinction!

Lebesgue area measure on \mathbb{C} is denoted by m_2 . The space of all compactly supported functions $f : \mathbb{C} \to \mathbb{C}$ with continuous partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ is denoted by $C_c^1(\mathbb{C})$. Cauchy-Riemann operator $\overline{\partial}$ is defined by

$$\overline{\partial} f = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

Lemma 3.1 (Cauchy). *If* $f \in C^1_c(\mathbb{C})$ *and* $\lambda \in \mathbb{C}$ *, then*

$$f(\lambda) = -\frac{1}{\pi} \int_{\mathbb{C}} \frac{\overline{\partial} f(z)}{z - \lambda} \, dm_2(z).$$

Proof. See Rudin [5], Lemma 20.3. [Hint: $\overline{\partial} = \frac{1}{2} e^{i\theta} \left(\frac{\partial}{\partial r} + \frac{i}{r} \frac{\partial}{\partial \theta} \right)$.]

We will now fix a compactly supported measure μ : Bor(\mathbb{C}) \rightarrow [0, ∞).

Lemma 3.2. For every $g \in L^{3/2}(\mu) \setminus \{0\}$ there is $\lambda \in \mathbb{C}$ such that $\mu(\{\lambda\}) = 0$,

$$\int \left|\frac{g(z)}{z-\lambda}\right|^{3/2} \mathrm{d}\mu(z) < \infty,$$

and

$$\int \frac{g(z)}{z-\lambda} \, \mathrm{d}\mu(z) \neq 0.$$

Proof. ([4], [2]) We will temporarily set a/0 = 0 for all $a \in \mathbb{C}$. Fix R > 0such that supp $(\mu) \subseteq \mathbb{D}(0, R)$. For every r > 0 we have, by Fubini's theorem,

$$\begin{split} \int_{\mathbb{D}(0,r)} \int \left| \frac{g(z)}{z - \lambda} \right|^{3/2} d\mu(z) \, dm_2(\lambda) &= \int |g(z)|^{3/2} \int_{\mathbb{D}(0,r)} |z - \lambda|^{-3/2} \, dm_2(\lambda) \, d\mu(z) \\ &\leq \int_{\mathbb{D}(0,r+R)} |\lambda|^{-3/2} \, dm_2(\lambda) \int |g|^{3/2} \, d\mu \\ &= 4\pi (r+R)^{1/2} \, \|g\|_{3/2}^{3/2} < \infty. \end{split}$$

Thus $\int |\frac{g(z)}{z-\lambda}|^{3/2} d\mu(z) < \infty$ for \mathfrak{m}_2 almost every $\lambda \in \mathbb{C}$. Because $\mu(\{\lambda\}) \neq 0$ holds only for countably many $\lambda \in \mathbb{C}$, we can abandon our temporary adjustment and conclude that for m_2 almost every $\lambda \in \mathbb{C}$ we have $\mu(\{\lambda\}) = 0$ and $\int \left|\frac{g(z)}{z-\lambda}\right|^{3/2} d\mu(z) < \infty$.

We will now assume that $\int \frac{g(z)}{z-\lambda} d\mu(z) = 0$ for m_2 almost every $\lambda \in \mathbb{C}$. It suffices to show that this leads to a contradiction. Suppose that $f \in C_c^1(\mathbb{C})$. Previous lemma shows that $f(z) = \frac{1}{\pi} \int \frac{\overline{\partial} f(\lambda)}{z-\lambda} dm_2(\lambda)$ for all $z \in \mathbb{C}$. Because

$$\iint \left| \frac{\partial f(\lambda)}{z - \lambda} g(z) \right| dm_2(\lambda) d\mu(z) < \infty,$$

we have, by using Fubini's theorem, that

$$\int fg \, d\mu = \int \left(\frac{1}{\pi} \int \frac{\overline{\partial} f(\lambda)}{z - \lambda} \, dm_2(\lambda)\right) g(z) \, d\mu(z)$$
$$= \frac{1}{\pi} \int \overline{\partial} f(\lambda) \left(\int \frac{g(z)}{z - \lambda} \, d\mu(z)\right) dm_2(\lambda)$$
$$= 0.$$

Since $C_c^1(\mathbb{C})$ is dense in $L^3(\mu)$, we have g = 0.² This is a contradiction. \Box

The proofs of the following theorems are from J. E. Thomson's article [6].

Theorem 3.3. If $P^2(\mu) \neq L^2(\mu)$, we can find a point $\lambda \in \mathbb{C}$ and vectors $x \in P^2(\mu)$ and $y \in L^2(\mu)$ such that

$$\mathbf{p}(\boldsymbol{\lambda}) = (\mathbf{p}\mathbf{x} \,|\, \mathbf{y})$$

for all $p \in P$ and $\mu(\{\lambda\}) = 0$.

Proof. ([6]) By assumption there exists $g \in L^2(\mu) \setminus \{0\}$ such that $\overline{g} \perp P^2(\mu)$. Because $g \in L^{3/2}(\mu) \setminus \{0\}$, we can choose λ as in Lemma 3.2. By scaling g we can assume that

$$\int \frac{\mathsf{g}(z)}{z-\lambda} \, \mathrm{d}\mu(z) = 1.$$

Let $\phi \in (P^3(\mu))^*$ be the functional given by

$$\phi(f) = \int f(z) \frac{g(z)}{z - \lambda} \, \mathrm{d}\mu(z).$$

Suppose that $p \in P$. If we set $f(z) = p(z) - p(\lambda)$, we can find $q \in P$ such that $f(z) = (z - \lambda)q(z)$. Because $\phi(1) = 1$ and $\overline{g} \perp P^2(\mu)$, we have

$$\phi(\mathbf{p}) - \mathbf{p}(\lambda) = \phi(\mathbf{f}) = \int (z - \lambda)q(z)\frac{g(z)}{z - \lambda} d\mu(z) = (q | \overline{g}) = 0.$$

Thus $p(\lambda) = \phi(p)$ for all $p \in P$.

By Hahn-Banach theorem there is $h \in L^{3/2}(\mu)$ such that $\|h\|_{3/2} = \|\varphi\|$ and $\varphi(f) = \int fh \, d\mu$ for all $f \in P^3(\mu)$. We will now factorize h into $x\overline{y}$.

Because $L^{3}(\mu)$ is reflexive, Banach-Alaoglu theorem implies that the closed unit ball of $P^{3}(\mu)$ is weakly compact. Since ϕ is weakly continuous, there exists $x \in P^{3}(\mu) \subseteq P^{2}(\mu)$ such that $||x||_{3} = 1$ and $\phi(x) = ||\phi||$. Using Hölder's inequality we now have

$$\|h\|_{3/2} = \|\phi\| = \phi(x) = \int xh \, d\mu \le \int |x| \, |h| \, d\mu \le \|x\|_3 \, \|h\|_{3/2} = \|h\|_{3/2}.$$

Because of equality in Hölder's inequality, there exists $\alpha > 0$ such that ³

$$|\mathbf{x}|^3 = \alpha \,|\mathbf{h}|^{3/2}.$$

²By using mollifiers we can show that $C_c^1(\mathbb{C})$ is dense in $C_c(\mathbb{C})$ with $\|\cdot\|_{\infty}$ -norm. Now combine this to the fact that $C_c(\mathbb{C})$ is dense in $L^3(\mathbb{C})$. (See Rudin [5], Thm. 3.14.)

³This holds for equivalence classes. We will choose representative functions for h and x, so that this will hold exactly.

Therefore $|x|^2=\alpha^{2/3}\,|h|.$ Let $y:\mathbb{C}\to\mathbb{C}$ be such that

$$y(z) = \begin{cases} \overline{h(z)/x(z)} & \text{if } x(z) \neq 0\\ 0 & \text{if } x(z) = 0 \end{cases}$$

We now have $y \in L^2(\mu)$ because $h \in L^{3/2}(\mu) \subseteq L^1(\mu)$ and

$$\int |y|^2 \, d\mu = \int \alpha^{-2/3} |h| \, d\mu < \infty.$$

Moreover $h = x\overline{y}$. Summing all up, we have proved that

$$p(\lambda) = \phi(p) = \int ph \, d\mu = \int px\overline{y} \, d\mu = (px | y)$$

for every $p \in P$.

Theorem 3.4 (Brown [3]). If dim(\mathcal{H}) ≥ 2 and $S \in \mathcal{B}(\mathcal{H})$ is subnormal, then S has a nontrivial invariant subspace.

Proof. ([6]) By Theorem 2.2. we can assume that S is cyclic. Bram's theorem now gives us a measure μ such that $S \simeq S_{\mu\nu}$ so it suffices to consider S_{μ} .

 $\begin{array}{c} \boxed{P^2(\mu) = L^2(\mu)} \end{array} \\ \begin{array}{c} \text{Because dim}(\mathcal{H}) \geq 2, \text{ we can choose } B \in Bor(\mathbb{C}) \text{ such that } \mu(B) > 0 \text{ and } \mu(\mathbb{C} \smallsetminus B) > 0. \end{array} \\ \begin{array}{c} \text{Thus } S_\mu \text{ has a nontrivial invariant subspace} \end{array} \\ \end{array}$

$$\mathcal{M} = \{ \chi_B f : f \in L^2(\mu) \}.$$

 $P^2(\mu) \neq L^2(\mu)$ Choose λ , x, and y as in Theorem 3.3. and define

$$\mathcal{M} = \{ px : p \in P \text{ and } p(\lambda) = 0 \}.$$

Fix $p \in P$ such that $p(\lambda) = 0$. For polynomial q(z) = zp(z) we also have $q(\lambda) = 0$, so $S_{\mu}px = qx \in \mathcal{M}$. Thus \mathcal{M} is an invariant subspace of S_{μ} . Because (x|y) = 1 and (px|y) = 0 whenever $p(\lambda) = 0$, we have $x \notin \mathcal{M}$. Therefore $\mathcal{M} \neq P^2(\mu)$. Because $x \neq 0$ and $\mu(\{\lambda\}) = 0$, we have $px \neq 0$ for the particular polynomial $p(z) = z - \lambda$. Hence $\mathcal{M} \neq \{0\}$.

The constructions made in the last two proofs are related to the so called *bounded point evaluation problem*. For further reading see Thomson [7] and Conway [4], and search for J. E. Brennan's contributions.

References

- [1] J. Bram, Subnormal operators. Duke Math. J., Vol. 22, 1955, pp. 75–94.
- [2] J. E. Brennan, Invariant subspaces and rational approximation. J. Funct. Anal., Vol. 7, 1971, pp. 285–310.
- [3] S. W. Brown, Some invariant subspaces for subnormal operators. Integral Equations and Operator Theory Vol. 1, 1978, pp. 310–333.
- [4] J. B. Conway, Subnormal operators. Pitman, Boston.
- [5] W. Rudin, Real and Complex Analysis. McGraw-Hill, 1987.
- [6] J. E. Thomson, *Invariant subspaces for algebras of subnormal operators*. Proceedings of the American Mathematical Society, Vol. 96, No. 3, 1986, pp. 462–464.
- [7] J. E. Thomson, *Approximation in the mean by polynomials*. Ann. of Math, Vol. 133, No. 3, 1991, pp. 477–507.