
INVARIANT SUBSPACE PROBLEM: SUBNORMAL OPERATORS

ABSTRACT. Subnormal operators have nontrivial invariant subspaces.
Why? We will take a look at Thomson [6].

1. INTRODUCTION

It will be assumed that Hilbert spaces are complex and subspaces are
closed. Hilbert spaces will be denoted by H and K. Notation H ≤ K will
mean that H is a subspace of K. The set of all bounded linear operators
H → H will be denoted by B(H).

An invariant subspace of A ∈ B(H) is a subspace M ≤ H such that
AM ⊆ M. It is called a nontrivial invariant subspace (n.i.s.) of A if also
M 6= {0} and M 6= H. The adjoint of an operator A ∈ B(H) is the unique
operator A∗ ∈ B(H) satisfying (Ax | y) = (x | A∗y) for all x, y ∈ H.

Definition 1.1. Operator N ∈ B(H) is called normal if N∗N = NN∗. Op-
erator S ∈ B(H) is called subnormal if there exists a Hilbert space K and a
normal operator N ∈ B(K) such that H ≤ K and S = N|H. Operator N is
called a normal extension of S.

Obviously all normal operators are subnormal.

Examples 1.2. We assume that H = `2.
(1) Shift operator S ∈ B(H) given by S(x1, x2, . . .) = (0, x1, x2, . . .) is

subnormal but not normal.
(2) Operator S∗ given by S∗(x1, x2, . . .) = (x2, x3, . . .) is not subnormal.

Our goal is to examine James Thomson’s short proof [6] of the following
theorem originally proved by Scott Brown [3]:

Theorem (Brown [3]). If dim(H) ≥ 2 and S ∈ B(H) is subnormal, then S

has a nontrivial invariant subspace.
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2. BACKGROUND

The set of all polynomial functions C → C will be denoted by P.

Definition 2.1. Operator A ∈ B(H) is called cyclic if for some x ∈ Hwe get

{p(A)x : p ∈ P} = H.

Vector x is called a cyclic vector of A.

Theorem 2.2. If A ∈ B(H) is not cyclic, then A has a n.i.s.

Proof. We can fix x ∈ Hr{0} and defineM = {p(A)x : p ∈ P}. Since x is not
a cyclic vector of A, the set M is a nontrivial invariant subspace of A. �

Definition 2.3. Operators A ∈ B(H) and B ∈ B(K) are called unitarily
equivalent if there exists an isometric isomorphism U : H → K such that
A = U−1BU. This will be denoted by A ' B.

Remark 2.4. Clearly' is reflexive, symmetric, and transitive. Also, ifM is
a nontrivial invariant subspace of A and A ' B with isomorphism U, then
UM is a nontrivial invariant subspace of B.

Definition 2.5. Suppose that t ∈ [1,∞) and that µ : Bor(C) → [0,∞) is
a compactly supported measure. We denote by Pt(µ) the closure of P in
Lt(µ). We also define an operator Sµ : P2(µ) → P2(µ) by Sµf(z) = z f(z). 1

Theorem 2.6 (Bram [1]). If S ∈ B(H) is cyclic and subnormal, there exists a
compactly supported measure µ : Bor(C) → [0,∞) such that S ' Sµ.

Proof. Fix a cyclic vector x ∈ H and a normal extension N ∈ B(K) of S. By
spectral theorem there exists a spectral measure E : Bor(C) → B(K) such
that N =

∫
z dE(z). We will now define

µ(B) = (E(B)x | x)

for B ∈ Bor(C). For every polynomial p ∈ P we now have

(p(S)x | p(S)x) = (p(N)∗p(N)x | x) =

( (∫
|p|2 dE

)
x

∣∣∣∣ x

)
=

∫
|p|2 dµ.

Because P is dense in P2(µ) and {p(S)x : p ∈ P} is dense inH, there exists an
isometric isomorphism U : P2(µ) → H such that Up = p(S)x for all p ∈ P.
If we set q(z) = zp(z), we also see that

USµp = Uq = q(S)x = Sp(S)x = SUp.

Therefore USµ = SU, which implies Sµ = U−1SU. Thus Sµ ' S. �

1Here Bor(C) denotes the collection of all Borel subsets of C. It should be noted that
Pt(µ) is actually the closure of the equivalence classes of polynomials with respect to µ.

That is, Pt(µ) = {[p]µ : p ∈ P}
Lt(µ)

, where [p]µ is the set of all Borel functions f : C → C
such that f and p are same µ almost everywhere. It can happen that p 6= q but [p]µ = [q]µ.
Beware, we are careless about this distinction!
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3. BROWN’S THEOREM

Lebesgue area measure on C is denoted by m2. The space of all com-
pactly supported functions f : C → C with continuous partial derivatives
∂f
∂x and ∂f

∂y is denoted by C1
c(C). Cauchy-Riemann operator ∂ is defined by

∂f =
1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Lemma 3.1 (Cauchy). If f ∈ C1
c(C) and λ ∈ C, then

f(λ) = −
1

π

∫
C

∂f(z)

z − λ
dm2(z).

Proof. See Rudin [5], Lemma 20.3. [Hint: ∂ = 1
2eiθ (

∂
∂r + i

r
∂
∂θ

)
.] �

We will now fix a compactly supported measure µ : Bor(C) → [0,∞).

Lemma 3.2. For every g ∈ L3/2(µ) r {0} there is λ ∈ C such that µ({λ}) = 0,∫ ∣∣∣ g(z)

z − λ

∣∣∣3/2

dµ(z) < ∞,

and ∫
g(z)

z − λ
dµ(z) 6= 0.

Proof. ([4], [2]) We will temporarily set a/0 = 0 for all a ∈ C. Fix R > 0

such that supp(µ) ⊆ D(0, R). For every r > 0 we have, by Fubini’s theorem,∫
D(0,r)

∫ ∣∣∣ g(z)

z − λ

∣∣∣3/2

dµ(z)dm2(λ) =

∫
|g(z)|3/2

∫
D(0,r)

|z − λ|−3/2 dm2(λ)dµ(z)

≤
∫

D(0,r+R)

|λ|−3/2 dm2(λ)

∫
|g|3/2 dµ

= 4π(r + R)1/2 ‖g‖3/2
3/2 < ∞.

Thus
∫
|g(z)
z−λ |

3/2
dµ(z) < ∞ for m2 almost every λ ∈ C. Because µ({λ}) 6= 0

holds only for countably many λ ∈ C, we can abandon our temporary
adjustment and conclude that for m2 almost every λ ∈ C we have µ({λ}) = 0

and
∫
|g(z)
z−λ |

3/2
dµ(z) < ∞.

We will now assume that
∫ g(z)

z−λ dµ(z) = 0 for m2 almost every λ ∈ C. It
suffices to show that this leads to a contradiction. Suppose that f ∈ C1

c(C).

Previous lemma shows that f(z) = 1
π

∫ ∂f(λ)
z−λ dm2(λ) for all z ∈ C. Because∫ ∫ ∣∣∣ ∂f(λ)

z − λ
g(z)

∣∣∣ dm2(λ)dµ(z) < ∞,
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we have, by using Fubini’s theorem, that∫
fg dµ =

∫ (
1

π

∫
∂f(λ)

z − λ
dm2(λ)

)
g(z)dµ(z)

=
1

π

∫
∂f(λ)

(∫
g(z)

z − λ
dµ(z)

)
dm2(λ)

= 0.

Since C1
c(C) is dense in L3(µ), we have g = 0. 2 This is a contradiction. �

The proofs of the following theorems are from J. E. Thomson’s article [6].

Theorem 3.3. If P2(µ) 6= L2(µ), we can find a point λ ∈ C and vectors
x ∈ P2(µ) and y ∈ L2(µ) such that

p(λ) = (px | y)

for all p ∈ P and µ({λ}) = 0.

Proof. ([6]) By assumption there exists g ∈ L2(µ) r {0} such that g ⊥ P2(µ).
Because g ∈ L3/2(µ) r {0}, we can choose λ as in Lemma 3.2. By scaling g

we can assume that ∫
g(z)

z − λ
dµ(z) = 1.

Let φ ∈ (P3(µ))∗ be the functional given by

φ(f) =

∫
f(z)

g(z)

z − λ
dµ(z).

Suppose that p ∈ P. If we set f(z) = p(z) − p(λ), we can find q ∈ P such
that f(z) = (z − λ)q(z). Because φ(1) = 1 and g ⊥ P2(µ), we have

φ(p) − p(λ) = φ(f) =

∫
(z − λ)q(z)

g(z)

z − λ
dµ(z) = (q | g) = 0.

Thus p(λ) = φ(p) for all p ∈ P.
By Hahn-Banach theorem there is h ∈ L3/2(µ) such that ‖h‖3/2 = ‖φ‖

and φ(f) =
∫

fhdµ for all f ∈ P3(µ). We will now factorize h into xy.
Because L3(µ) is reflexive, Banach-Alaoglu theorem implies that the

closed unit ball of P3(µ) is weakly compact. Since φ is weakly continu-
ous, there exists x ∈ P3(µ) ⊆ P2(µ) such that ‖x‖3 = 1 and φ(x) = ‖φ‖.
Using Hölder’s inequality we now have

‖h‖3/2 = ‖φ‖ = φ(x) =

∫
xh dµ ≤

∫
|x| |h|dµ ≤ ‖x‖3 ‖h‖3/2 = ‖h‖3/2.

Because of equality in Hölder’s inequality, there exists α > 0 such that 3

|x|3 = α |h|3/2.

2By using mollifiers we can show that C1
c(C) is dense in Cc(C) with ‖·‖∞-norm. Now

combine this to the fact that Cc(C) is dense in L3(C). (See Rudin [5], Thm. 3.14.)
3This holds for equivalence classes. We will choose representative functions for h and x,

so that this will hold exactly.
4



Therefore |x|2 = α2/3 |h|. Let y : C → C be such that

y(z) =

{
h(z)/x(z) if x(z) 6= 0

0 if x(z) = 0.

We now have y ∈ L2(µ) because h ∈ L3/2(µ) ⊆ L1(µ) and∫
|y|2 dµ =

∫
α−2/3|h|dµ < ∞.

Moreover h = xy. Summing all up, we have proved that

p(λ) = φ(p) =

∫
phdµ =

∫
pxy dµ = (px | y)

for every p ∈ P. �

Theorem 3.4 (Brown [3]). If dim(H) ≥ 2 and S ∈ B(H) is subnormal, then
S has a nontrivial invariant subspace.

Proof. ([6]) By Theorem 2.2. we can assume that S is cyclic. Bram’s theorem
now gives us a measure µ such that S ' Sµ, so it suffices to consider Sµ.

P2(µ) = L2(µ) Because dim(H) ≥ 2, we can choose B ∈ Bor(C) such
that µ(B) > 0 and µ(CrB) > 0. Thus Sµ has a nontrivial invariant subspace

M = {χBf : f ∈ L2(µ)}.

P2(µ) 6= L2(µ) Choose λ, x, and y as in Theorem 3.3. and define

M = {px : p ∈ P and p(λ) = 0}.

Fix p ∈ P such that p(λ) = 0. For polynomial q(z) = zp(z) we also have
q(λ) = 0, so Sµpx = qx ∈ M. Thus M is an invariant subspace of Sµ.
Because (x | y) = 1 and (px | y) = 0 whenever p(λ) = 0, we have x 6∈ M.
Therefore M 6= P2(µ). Because x 6= 0 and µ({λ}) = 0, we have px 6= 0 for
the particular polynomial p(z) = z − λ. Hence M 6= {0}. �

The constructions made in the last two proofs are related to the so called
bounded point evaluation problem. For further reading see Thomson [7] and
Conway [4], and search for J. E. Brennan’s contributions.
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