Orlicz spaces as a generalization of L^p spaces

Sauli Lindberg

When $1 \leq p < \infty$, we can define $\Phi : [0, \infty) \to [0, \infty)$ by $\Phi(t) = t^p$ and present the L^p norm of a function $f \in L^p(\mathbb{R}^n)$ in the form

$$||f||_{L^p} = \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{\frac{1}{p}} = \Phi^{-1}\left(\int_{\mathbb{R}^n} \Phi(|f(x)|) dx\right).$$

In this talk we define Orlicz spaces by replacing Φ by a more general function than $\Phi(t) = t^p$. We indicate why we can't generalize L^p norms by simply defining

$$\|f\|_{L^{\Phi}} \equiv \Phi^{-1}\left(\int_{\mathbb{R}^n} \Phi(|f(x)|) \, dx\right)$$

for suitable Φ . We show why it is, instead, natural to use the rather oddlooking Luxemburg functional given by

$$\|f\|_{L^{\Phi}} \equiv \inf\left\{A > 0: \int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{A}\right) dx \le 1\right\}.$$
 (1)

When Φ is convex and increasing, $\Phi(0) = 0$ and $\lim_{t\to\infty} \Phi(t) = \infty$, the set

$$\left\{f: \mathbb{R}^n \to \mathbb{R} \text{ measurable}: \int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{A}\right) dx \le 1 \text{ for some } A > 0\right\}$$

becomes a Banach space when endowed with the norm given by (1).

As a special case we treat $\Phi(t) = t \log^+ t$, where $\log^+ t = \max\{0, \log t\}$. We show that when $f : \mathbb{R}^n \to \mathbb{R}$ is measurable and supported on a compact set $K \subset \mathbb{R}^n$ and Mf is the Hardy-Littlewood maximal function of f, the uniform estimate

$$||Mf||_{L^1(K)} \le C_K ||f||_{L^{\Phi}(K)}$$

holds.

The talk will be given in English unless all the participants of the seminar are Finnish speaking.