STOCHASTIC POPULATION MODELS

EXERCISES 10-12

10.

Solve the stochastic differential equation

$$dX(t) = X(t) \left(\frac{1}{2}b^2 - a\log X(t)\right) dt + bX(t) dW(t) \quad \text{(Ito)}$$

with $X(0) = x_0$ a.s. and a, b > 0, using the substitution $Y(t) = \log X(t)$.

11.

Let X(t) be a solution of the stochastic differential equation

$$dX = g(X, t) \, dW \quad (Ito)$$

Calculate the time-derivative of Y(t) = h(X(t), W(t)).

12.

Consider the stationary stochastic processes X(t) and Y(t), both with zero mean, and Z(t) = aX(t) + bY(t), and show that

(a) $C_{Z,Z}(\tau) = a^2 C_{X,X}(\tau) + ab C_{X,Y}(\tau) + ab C_{Y,X}(\tau) + b^2 C_{Y,Y}(\tau).$ (b) $C_{X,Y}(\tau) = C_{Y,X}(-\tau).$ (c) $C_{\dot{X},Y}(\tau) = C'_{X,Y}(\tau)$ (d) $C_{X,\dot{Y}}(\tau) = -C'_{X,Y}(\tau)$ (e) $C_{\dot{X},\dot{Y}}(\tau) = -C''_{X,Y}(\tau)$

where \dot{X} and \dot{Y} are the time-derivatives of X(t) and Y(t), and where $C'_{X,Y}(\tau)$ and $C''_{X,Y}(\tau)$ are, respectively, the first- and second-order derivatives of the crosscovariance function $C_{X,Y}(\tau)$.