
STOCHASTIC POPULATION MODELS

EXERCISES 1-4

1. Model the following processes (separated by “&”) as networks of monomolec-
ular or bimolecular reactions, i.e., decide what kind of “molecules” you need and
what “reactions” describe the processes best. For each network also give the cor-
responding population equations (ODEs) for the rate of change in the population
densities using the principle of mass action.

(a) binary fission of a cell & cell death

(b) asexual reproduction & maturation of the offspring

(c) marriage & divorce

(d) transmission of a disease from an infected to an uninfected individual &
recovery from the disease

(e) predator attacks and prey is captured & predator attacks but prey escapes

(f) predator detects prey and stealthily approaches & prey notices approaching
predator and escapes & prey does not notice predator and is captured

(g) the meeting of an acquaintance in a crowded street & breaking up of the
meeting after a handshake and a little chat

2. What is the difference between the following two modes of reproduction:

A
α−→ 2A and 2A

α−→ 3A

Give the corresponding population equations and solve explicitly using the same
initial density of A. Plot the solution of each as a function of time in the same
graph to see the difference in dynamics.
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3. Let I denote an infected individual and S an uninfected but susceptible indi-
vidual, and consider the following processes:

S + I
α−→ 2I (transmission)

I
β−→ S (recovery)

Use this model to derive a mechanistic underpinning for the logistic equation

dx

dt
= rx(1− x

K
)

where r and K are functions of the rates α and β. Make a graph of K versus r
to show how K and r co-vary as a consequence of varying α and, separately, β.
What is the range within α and β can meaningfully vary?

4. To get the time-scale separation between the dynamics of p and s in{
dp
dt

= +βs(e0 − p) −γp
ds
dt

= αp −βs(e0 − p) −δs
(i.e, equation (20) in section 1.9 of the lecture notes) in a more rigorous way, let
ε > 0 be a dimensionless scaling parameters, and write α = α∗ε−1 and δ = δ∗ε−1, so
that reproduction and seed death become arbitrary fast as ε approaches zero.

Let further t∗ = t ε−1 denote the so-called fast time (as opposed to merely t which
is referred to as normal or slow time). Derive the fast dynamics by rewriting the
system for fast time, i.e., give equations for

dp

dt∗
=

dp

dt

dt

dt∗
and

ds

dt∗
=

ds

dt

dt

dt∗

and then take the limit for ε→ 0. Solve the resulting dynamics.

Next, consider the original system in normal time, but multiply the equation for s
with ε (both sides!) and take the limit for ε→ 0. Compare the resulting equations
with equation (22) of the lecture notes. Why is it necessary to analyse the fast
dynamics at all and not just look at the slow dynamics?


