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6. Fluctuation statistics of stationary processes

6.1. Mean and auto-covariance of a stochastic process. Let {X(t)} be a stochastic
process. Then the mean of the process is defined as

(1) X(t) := E{X(t)}

and the auto-covariance as

(2) CX(t1, t2) := E
{(
X(t1)−X(t1)

)(
X(t2)−X(t2)

)}
The auto-covariance gives the covariance between two different points in time. For
example, take the Wiener process {W (t)}. Then from Section 5.3 we know that

(3) W (t) = 0

and the auto-covariance as

(4) CW (t1, t2) = E{W (t1)W (t2)} = min{t1, t2}

6.2. Stationary stochastic processes. A stochastic process {X(t)} is stationary if the
probability distribution of X(t) does not depend on t. For the Wiener process {W (t)}
we have

(5) W (t) ∼ N (0, t)

in which the variance depends on t, and so the Wiener process is not stationary. However,
for any fixed ∆t the Wiener increment

(6) ∆W (t) := W (t+ ∆t)−W (t)

is distributed as

(7) ∆W (t) ∼ N (0,∆t)

which is independent of t, and so the process {∆W (t)} is stationary.

For the Ornstein-Uhlenbeck process {X(t)} with initial value X(0) = x0 we found in
Section 5.4 that

(8) X(t) ∼ N
(
x0e
−at,

b2

2a

(
1− e−2at

))
1
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(for positive a and b) which is obviously not stationary. However,

(9) lim
t→∞

X(t) ∼ N
(

0,
b2

2a

)
does not depend on t and therefore is stationary. In other words, the Ornstein-Uhlenbeck
process is asymptotically stationary.

Figure 1. Ten sample paths of the Ornstein-Uhlenbeck process with
X(0) = 5 and a = b = 1. Solid line indicates the mean and the dashed
lines the mean plus/minus the standard deviation of the distribution of
X(t).

6.3. Mean and auto-covariance of a stationary stochastic process. The mean
X of a stationary process {X(t)} is independent of t, and the auto-covariance

(10) CX(τ) := E
{(
X(t+ τ)−X

)(
X(t)−X

)}
depends only on the time-difference τ . One immediately verifies that the auto-covariance
of a stationary process is an even function, i.e.,

(11) CX(τ) = CX(−τ)

and that CX(0) is the variance of the process. We further introduce the spectral density
of a stationary process as the Fourier transform of the auto-covarance, i.e.,

(12) SX(ω) :=

∫ +∞

−∞
C(τ)e−iωτdτ

Note that since the auto-covariance is real and even, the spectral density is also a real
and even function.

For the Wiener increment {∆W (t)} over a time-interval of fixed length ∆t > 0 we find
by direct calculation that the mean

(13) ∆W = 0

and the auto-covariance

(14) C∆W (τ) =

 ∆t− |τ | if |τ | ≤ ∆t

0 otherwise
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and its Fourier transform, the spectral density

(15) S∆W (ω) =
2(1− cosω∆t)

ω2

Figure 2. Auto-covariance and spectral density for the Wiener incre-
ment {∆W (t)}

In Section 5.5 we have seen that the Gaussian white noise is the stationary process {ξ(t)}
with E{ξ(t)} = 0 and E{ξ(t1)ξ(t2)} = δ(t1− t2). The auto-covariance of the white noise
therefore is

(16) Cξ(τ) = δ(τ)

and the spectral density

(17) Sξ(ω) = 1

Figure 3. Auto-covariance and spectral density for the Gaussian white
noise {ξ(t)}

6.4. Useful properties of the auto-covariance and cross-covariance. Consider
the stationary Ornstein-Uhlenbeck process generated by the linear SDE

(18) dX + aX dt = b dW

for positive a and b. How do we calculate the auto-covariance and spectral density of
this process?

To answer this question we introduce the cross-covariance of two stationary processes
{X(t)} and {Y (t)} as the function

(19) CX,Y (τ) = E
{(
X(t+ τ)−X

)(
Y (t)− Y

)}
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Notice that CX,X is identical to the auto-covariance CX defined in Section 6.3, and
CX,Y (0) is the covariance betweenX(t) and Y (t) for arbitrary t, and CX,Y (τ) = CY,X(−τ).

If, for arbitrary a and b, we define the process

(20) Z(t) := aX(t) + bY (t)

then

(21) CZ,Z = a2CX,X + abCX,Y + abCY,X + b2CY,Y

Here are some further useful properties of the auto-covariance function:

(a) C dX
dt
,Y = +C ′X,Y

(b) CX, dY
dt

= −C ′X,Y

(c) C dX
dt
, dY
dt

= −C ′′X,Y

where C ′X,Y and C ′′X,Y are the first- and second-order derivatives of CX,Y (τ) with respect
to τ . The proofs are left as an exercise. Applying these properties with Y = X to the
left and the right hand side of equation (18) gives

(22) −C ′′X,X + a2CX,X = b2δ

where δ is the Dirac delta distribution, which is the auto-covariance of the white noise
dW/dt (see Section 6.3). This is a second-order differential equation that could be solved
directly, but we can also take Fourier transforms, which gives

(23) ω2SX,X + a2SX,X = b2

It follows that spectral density of the stationary Ornstein-Uhlenbeck process is

(24) SX,X(ω) =
b2

ω2 + a2

Taking inverse Fourier transforms, we find that the auto-covariance is

(25) CX,X(τ) =
b2

2|a|
e−|aτ |

Figure 4. Auto-covariance and spectral density for the Ornstein-
Uhlenbeck process (18) with a = b = 1.
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6.5. Linear second-order auto-correlative process. Consider the linear second-
order auto-correlative process given by the differential equation

(26)
d2X

dt2
+ a

dX

dt
+ bX = c

dW

dt

where dW/dt is the Gaussian white noise. The above equation is equivalent to the system
of first-order linear stochastic differential equations

(27)

 dX = Y dt

dY + aY dt+ bXdt = dW

The corresponding homogeneous ordinary differential equation

(28)
d2X

dt2
+ a

dX

dt
+ bX = 0

has the following explicit solution:

(29) X(t) = Ae−
1
2
t(a+

√
a2−4b) +Be−

1
2
t(a−

√
a2−4b)

for given constants A and B. It can be seen that for a > 0, the deterministic solution
converges to zero, and that if a2 − 4b < 0, the exponents are complex numbers and so
the solution is underdamped, i.e., has a cyclic component. It can be expected then that
the same cyclic component will turn up if the orbit is perturbed by white noise, because
that is what happens in the SDE (26).

From the properties (a), (b) and (c) in the section 6.4, it can be deduced that

(d) C d2X
dt2

,Y
= +C ′′X,Y

(e) C
X, d

2Y
dt2

= +C ′′X,Y

(f) C d2X
dt2

, dY
dt

= −C ′′′X,Y

(g) C dX
dt
, d

2Y
dt2

= +C ′′′X,Y

(h) C d2X
dt2

, d
2Y
dt2

= +C ′′′′X,Y

The proof is left as an exercise. Applying these properties with Y = X to the linear
second-order auto-correlative process defined by (26) gives

(30) C ′′′′X,X − (a2 − 4b)C ′′X,X + b2CX,X = c2δ

where δ is the Dirac delta distribution. Taking Fourier transforms yields

(31) ω4SX,X + (a2 − 4b)ω2SX,X + b2SX,X = c2

and so

(32) SX,X(ω) =
c2

ω4 + (a2 − 4b)ω2 + b2
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The inverse Fourier transform gives the auto-covariance, but I didn’t manage to do that
analytically. Once we have the spectral density, however, we can calculate its inverse
Fourier transform by numerical integration, as was done in the figure below.

Figure 5. Auto-covariance and spectral density for the underdamped
linear second-order auto-correlative process (26) with a = 2, b = 10 and
c = 1.

The damped oscillations in the CX,X are the telltale sign of a so-called phase-forgetting
quasi cycle. The peaks in the spectral density correspond to the frequency of the solution
of the corresponding homogeneous ordinary differential equation (28) with the same
values of a, b and c.

Figure 6. Sample path of the underdamped linear second-order auto-
correlative process (26) with a = 2, b = 10 and c = 1. The dashed line is
a sine wave with the same frequency that peaks in the plot of the spectral
density. Notice the quasi-periodic character of the sample path.

6.6. Integrated noise. Every measurement takes time. No physical instrument can
measure the instantaneous value of a signal. Instead it measures a (weighed) average
of the signal over a given (possibly very short) period of time. The same is true for
organisms: because of slow reaction times, individuals react to averages of temperature,
moisture and the like. This is our motivation to look at the following problem: given
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the stochastic process {X(t)} define

(33) Y (t) :=

∫ ∞
0

X(t− τ)ϕ(τ)dτ

for some given probability distribution ϕ. How do we calculate the auto-covariance and
spectral density of the process {Y (t)} if those for {X(t)} are given? We shall address
this problem not in general, but only for the case when ϕ is the uniform distribution or
the exponential distribution.

Uniform distribution:

Suppose that ϕ is the uniform distribution on the time interval (0,∆t). Then

(34) Y (t) :=
1

∆t

∫ ∆t

0
X(t− τ)dτ

Differentiating with respect to time gives

(35)

d
dtY (t) = 1

∆t

∫ ∆t
0

d
dtX(t− τ)dτ

= −1
∆t

∫ ∆t
0

d
dτX(t− τ)dτ

= 1
∆t

(
X(t)−X(t−∆t)

)
Equating the auto-covariance function of the left and right side gives

(36) −C ′′Y =
1

(∆t)2

(
CX,X − CX,X∆t

− CX∆t,X + CX∆t,X∆t

)
where X∆t(t) := X(t−∆t). One readily sees that

(i) CX,X∆t
(τ) = E

{
X(t+ τ)−X(t−∆t)

}
= CX(τ + ∆t)

(j) CX∆t,X(τ) = E
{
X(t−∆t+ τ)−X(t)

}
= CX(τ −∆t)

(k) CX∆t,X∆t
(τ) = E

{
X(t−∆t+ τ)−X(t−∆t)

}
= CX(τ)

Applying this to equation (36), we have

(37) −C ′′Y (τ) =
1

(∆t)2

(
2CX − CX(τ + ∆t)− CX(τ −∆t)

)
Taking Fourier transforms gives

(38) ω2SY (ω) =
1

(∆t)2

(
2− eiω∆t − e−iω∆t

)
SX(ω)

and so

(39) SY (ω) =
2(1− cosω∆t)

(ω∆t)2
SX(ω)

Taking inverse Fourier transforms gives

(40) CY (τ) =

∫ +∞

−∞
Φ(t)CX(τ − t)dt =: (Φ ∗ CX)(τ)
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i.e., the convolution of Φ and CX , where Φ is the inverse Fourier transform of 2(1 −
cosω∆t)/(ω∆t)2, which is

(41) Φ(τ) :=


1

∆t2
(∆t− |τ |) if |τ | ≤ ∆t

0 otherwise

and which is immediately recognized as the auto-covariance function of the (scaled)
Wiener increment {∆W (t)/∆t} (see section 6.3).

Exponential distribution:

Suppose that ϕ is the exponential distribution with parameter λ. Then

(42) Y (t) := λ

∫ ∞
0

e−λτX(t− τ)dτ

Differentiating with respect to time gives

(43)

d
dtY (t) = λ

∫∞
0 e−λτ ddtX(t− τ)dτ

= −λ
∫∞

0 e−λτ d
dτX(t− τ)dτ

= −λ
[
e−λτX(t− τ)

]∞
0
− λ2

∫∞
0 e−λτX(t− τ)dτ

= λX(t)− λY (t)

Taking the −λY (t) to the left hand side gives

(44)
d

dt
Y (t) + λY (t) = λX(t)

It can immediately be seen that if {X(t)} is the Gaussian white noise, then {Y (t)} is
the Ornstein-Uhlenbeck process from Section 6.4 with a = b = λ.

Using the properties (a), (b) and (c), we find

(45) −C ′′Y + λ2CY = λ2CX

and hence

(46) ω2SY + λ2SY = λ2SX

and so

(47) SY (ω) =
λ2

ω2 + λ2
SX

Taking the inverse Fourier transform, we find

(48) CY (τ) =

∫ +∞

−∞
Φ(t)CX(τ − t)dt =: (Φ ∗ CX)(τ)

i.e., the convolution of Φ and CX , where Φ is the inverse Fourier transform of λ2/(ω2+λ2,
which is

(49) Φ(τ) :=
1

2
λe−λ|τ |
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i.e., the auto-covariance function of the Ornstein-Uhlenbeck process from Section 6.4
with a = b = λ.

6.7. Functions of noise. Suppose {X(t)} is a known stationary stochastic process
with auto-covariance function CX(τ) and spectral density SX(ω), and for given function
h : R→ R let

(50) Y (t) := h(X(t))

What do the auto-covariance and spectral density of of the process {Y (t)} look like?
In all our applications we consider low amplitude noise, i.e., noise with a low variance.
Assuming that the function h is at least twice differentiable, we can make the following
approximations by second-order Taylor expansion of h(X) about value X̄:

(51)
Ȳ = E

{
h(X(t))

}
≈ h(X̄) + 1

2h
′′(X̄)CX(0)

and

(52)
E
{
Y (t+ τ)Y (t)

}
= E

{
h(X(t+ τ))h(X(t))

}
≈ h(X̄)2 + h(X̄)h′′(X̄)CX(0) + h′(X̄)2CX(τ)

and hence

(53)
CY (τ) = E

{
Y (t+ τ)Y (t)

}
− Ȳ 2

≈ h′(X̄)2CX(τ)

and

(54) SY (ω) ≈ h′(X̄)2SX(ω)

Birth rates and death rates are necessarily positive and may be log-normally distributed.

As an example, let Y (t) be a stochastic birth rate given by

(55) Y (t) := c eX(t) (c > 0)

where {X(t)} is the stationary Ornstein-Uhlenbeck process generated by

(56) dX + aXdt = bdW (a > 0)

Then,

(57) X(t) ∼ N
(

0,
b2

2a

)

(58) CX(τ) =
b2

2a
e−a|τ |

and

(59) SX(τ) =
b2

ω2 + a2
.
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Consequently,

(60) log Y (t) ∼ N
(

log c,
b2

2a

)

(61) Ȳ ≈ c+
c

2
CX(0) = c

(
1 +

b2

4a

)

(62) CY (τ) ≈ c2CX(τ) =
b2c2

2a
e−a|τ |

and

(63) SY (ω) ≈ c2SX(ω) =
b2c2

ω2 + a2
.

Compare the above approximate values of the mean and variance of Y (t) with their
exact values

(64) Ȳ = ce
b2

4a = c

(
1 +

b2

4a
+ . . .

)
and

(65) CY (0) = c2
(
e

b2

2a − 1
)
e

b2

2a = c2

(
b2

2a
+ . . .

)
which can be calculated directly from the log-normal probability density or you can look
them up in a table of probability distributions.


