ON THE PROBABILITY OF INVASION IN A MULTI-TYPE BRANCHING PROCESS WITH A SINGLE BIRTH STATE

STEFAN A. H. GERITZ

Consider a multi-type branching process with states $0, \ldots, n$, and where 0 corresponds to the unique birth state, and let b_{j} denote the birth rate and d_{j} the death rate in state j, and let $t_{i j}$ be the transition rate from state j to state i. For the conservation of probability mass we necessarily have

$$
\begin{equation*}
t_{j j}=-\sum_{i \neq j} t_{i j} \quad \forall j . \tag{1}
\end{equation*}
$$

Let further $p_{j}[l]$ denote the probability that an individual presently in state j will produce l offspring during the rest of its stay in the same state j, and let $q_{j}(k)$ denote the probability that an individual presently in state j will produce k offspring during the rest of its life in the present state and all other states it will visit thereafter. Then

$$
\begin{equation*}
p_{j}[l]=\left(\frac{b_{j}}{b_{j}+d_{j}-t_{j j}}\right)^{l}\left(\frac{d_{j}-t_{j j}}{b_{j}+d_{j}-t_{j j}}\right) \tag{2}
\end{equation*}
$$

(i.e., the probability that there are l birth-events followed by a single non-birth event which terminates the the stay in state j either by a death event or a transition to another state), and

$$
\begin{equation*}
q_{j}[k]=p_{j}[k] \frac{d_{j}}{d_{j}-t_{j j}}+\sum_{l=0}^{k} p_{j}[l] \sum_{i \neq j}\left(q_{i}[k-l] \frac{t_{i j}}{d_{j}-t_{j j}}\right) \tag{3}
\end{equation*}
$$

(i.e., the probability of producing k offspring in state j followed by a death event plus the probability of producing l offspring in state j and $k-l$ offspring during the rest of the individual's life after a transition to another state).
Let $f_{j}(z)$ and $g_{j}(z)$ denote the probability generating functions of the distributions $\left\{p_{j}[l]\right\}_{l \geq 0}$ and $\left\{q_{j}[k]\right\}_{k \geq 0}$. Then

$$
\begin{equation*}
f_{j}(z)=\frac{d_{j}-t_{j j}}{(1-z) b_{j}+d_{j}-t_{j j}} \tag{4}
\end{equation*}
$$

and after some pretty straightforward calculations, also involving equation (4),

$$
\begin{equation*}
g_{j}(z)\left((1-z) b_{j}+d_{j}\right)=d_{j}+\sum_{\forall i} g_{i}(z) t_{i j} \tag{5}
\end{equation*}
$$

Date: 25 May 2009.

Differentiation of equation (5) gives

$$
\begin{equation*}
R_{j} d_{j}-b_{j}=\sum_{\forall i} R_{i} t_{i j} \tag{6}
\end{equation*}
$$

where we used that $g_{j}(1)=1$ and $g_{j}^{\prime}(1)=\mathcal{E}_{j}\{k\}=R_{j}$, which is the reproduction ratio of state j. Note that in particular R_{0} is the well-known basic reproduction ratio. Define

$$
\begin{align*}
& \mathbf{R}:=\left(\begin{array}{ccc}
R_{0} & \ldots & R_{n} \\
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right), \quad \mathbf{B}:=\left(\begin{array}{ccc}
b_{0} & \ldots & b_{n} \\
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right) \tag{7}\\
& \mathbf{D}:=\left(\begin{array}{ccc}
d_{0} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & d_{n}
\end{array}\right), \quad \mathbf{T}:=\left(\begin{array}{ccc}
t_{00} & \ldots & t_{0 n} \\
\vdots & & \vdots \\
t_{n 0} & \ldots & t_{n n}
\end{array}\right)
\end{align*}
$$

Since there is only one birth state, \mathbf{R} is equal to the so-called next generation matrix. Equation (6) can be written in matrix notation as

$$
\begin{equation*}
\mathbf{R}(\mathbf{D}-\mathbf{T})=\mathbf{B} \tag{8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathbf{R}=\mathbf{B}(\mathbf{D}-\mathbf{T})^{-1} \tag{9}
\end{equation*}
$$

which is possible because $\mathbf{D}-\mathbf{T}$ is strictly diagonally dominant and thus can be inverted.

Next, let z_{j} denote the probability of the eventual extinction of the branching process starting in state j. Then, substitution of $z=z_{0}$ in equation (5) gives

$$
\begin{equation*}
z_{j}\left(\left(1-z_{0}\right) b_{j}+d_{j}\right)=d_{j}+\sum_{\forall i} z_{i} t_{i j} \tag{10}
\end{equation*}
$$

where we used that $g_{j}\left(z_{0}\right)=z_{j}$ for all j. Let $\pi_{j}=1-z_{j}$ denote the probability of invasion starting from state j, then from equation (10) and equation (1) we get that

$$
\begin{equation*}
\pi_{j}\left(\pi_{0} b_{j}+d_{j}\right)=\pi_{0} b_{j}+\sum_{\forall i} \pi_{i} t_{i j} \tag{11}
\end{equation*}
$$

Define

$$
\boldsymbol{\Pi}:=\left(\begin{array}{ccc}
\pi_{0} & \ldots & \pi_{n} \tag{12}\\
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right)
$$

then equation (11) can be rewritten as

$$
\begin{equation*}
\boldsymbol{\Pi}\left(\pi_{0} \mathbf{B}+\mathbf{D}-\mathbf{T}\right)=\pi_{0} \mathbf{B} . \tag{13}
\end{equation*}
$$

Right-multiplication with $(\mathbf{D}-\mathbf{T})^{-1}$, using equation (9), subsequently gives

$$
\begin{equation*}
\boldsymbol{\Pi}\left(\pi_{0} \mathbf{R}+\mathbf{I}\right)=\pi_{0} \mathbf{R} \tag{14}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\boldsymbol{\Pi}=\pi_{0} \mathbf{R}\left(\pi_{0} \mathbf{R}+\mathbf{I}\right)^{-1} \tag{15}
\end{equation*}
$$

where \mathbf{I} is the identity matrix. We can do this because $\pi_{0} \mathbf{R}+\mathbf{I}$ is the product of two non-singular matrices, namely $\pi_{0} \mathbf{B}+\mathbf{D}-\mathbf{T}$, which is strictly diagonally dominant, and $(\mathbf{D}-\mathbf{T})^{-1}$. Hence $\pi_{0} \mathbf{R}+\mathbf{I}$ is non-singular itself and can be inverted. Formal expansion of the right hand side of equation (15) gives

$$
\begin{equation*}
\boldsymbol{\Pi}=\pi_{0} \mathbf{R} \sum_{i=0}^{\infty}(-1)^{i} \pi_{0}^{i} \mathbf{R}^{i} \tag{16}
\end{equation*}
$$

which converges whenever all eigenvalues of $\pi_{0} \mathbf{R}$ lie inside the unit circle in the complex plane, i.e., whenever $\pi_{0} R_{0}<1$. Writing out equation (18) for the upper leftmost element (i.e., the only element that matters, really), we get

$$
\begin{equation*}
\pi_{0}=\frac{\pi_{0} R_{0}}{1+\pi_{0} R_{0}} \tag{17}
\end{equation*}
$$

i.e., $\pi_{0}=0$ or

$$
\begin{equation*}
\pi_{0}=\frac{R_{0}-1}{R_{0}} \tag{18}
\end{equation*}
$$

whenever the the latter is positive, i.e., whenever $R_{0}>1$. If $R_{0} \leq 0$, then $\pi_{0}=0$ is the only solution. Thus, in conclusion, we have shown that

$$
\pi_{0}=\left\{\begin{array}{ccc}
0 & \text { if } & R_{0} \leq 0 \tag{19}\\
\frac{R_{0}-1}{R_{0}} & \text { if } & R_{0}>1
\end{array}\right.
$$

I would like to emphasize that this result is exact.

