1. Consider a gamma process $X(t)$ with independent homogeneous increments and Lévy measure

$$
\nu(d x)=\beta e^{-\alpha x} x^{-1} d x
$$

and consider the martingale $\widetilde{X}(t)=X(t)-t E\left(X_{1}\right)=X(t)-t \beta / \alpha$.
(a) Compute its quadratic variation $[\widetilde{X}]_{t}$ and predictable variation $\langle\widetilde{X}\rangle_{t}$.
(b) Compute the quadratic variation and predictable variations the martingale

$$
I(t):=\int_{0}^{t} \widetilde{X}(s-) d \widetilde{X}(s)
$$

where the integral is defined pathwise in Lebesgue Stieltjes sense.
(c) Show that $I(t)$ is also an Ito integral with respect to the $L^{2}(P)$ martingale $\widetilde{X}(t)$.
2. (Lenglart's inequality)

Let $X_{t}(\omega) \geq 0$ with $X_{0}=0$, and $A_{t}(\omega) \geq 0$ continuous processes adapted with respect to $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{R}^{+}\right)$, and assume that A_{t} is non-decreasing such that for all bounded stopping times $\tau(\omega)$

$$
\begin{equation*}
E\left(X_{\tau}\right) \leq E\left(A_{\tau}\right) \tag{0.1}
\end{equation*}
$$

We introduce the running maximum $X_{t}^{*}(\omega)=\max _{0 \leq s \leq t} X_{s}(\omega)$ which is a non-decrasing process and therefore has finite variation on compact intervals.
Prove the following inequalities for all \mathbb{F}-stopping times τ, (also unbounded): $\forall \varepsilon, \delta>0$
a) $\quad P\left(X_{\tau}^{*}>\varepsilon\right) \leq \frac{E\left(A_{\tau}\right)}{\varepsilon}$
b) $\quad P\left(X_{\tau}^{*}>\varepsilon, A_{\tau} \leq \delta\right) \leq \frac{E\left(A_{\tau} \wedge \delta\right)}{\varepsilon}$
c) $\quad P\left(X_{\tau}^{*}>\varepsilon\right) \leq \frac{E\left(A_{\tau} \wedge \delta\right)}{\varepsilon}+P\left(A_{\tau}>\delta\right)$

Hint: First assume that τ is a bounded stopping time, then you can use monotone convergence for unbounded stopping times.

Define

$$
\sigma(\omega)=\inf \left\{t: X_{t}(\omega)>\varepsilon\right\}
$$

and note that

$$
\left\{X_{\tau}^{*}>\varepsilon\right\}=\{\sigma<\tau\}
$$

Use the assumption (0.1) for the stopping time $\sigma \wedge \tau$.
3. Let M_{t} a continuous \mathbb{F}-local martingale. Then M has \mathbb{F}-predictable variation $\langle M\rangle_{t}$ is the non-decreasing process with $\langle M\rangle_{0}=0$ such that

$$
N_{t}=M_{t}^{2}-\langle M\rangle_{t}
$$

is a \mathbb{F}-local martingale. (A continuous local martingale is locally bounded and and Doob decomposition applies to the bouned submartingale $M_{t \wedge \tau_{n}}^{2}$ with localizing sequence $\tau_{n} \ldots$).
Show that for any \mathbb{F}-stopping time τ

$$
P\left(\max _{0 \leq s \leq \tau(\omega)}\left|M_{s}(\omega)\right|>\varepsilon\right) \leq \frac{E\left(\delta \wedge\langle M\rangle_{\tau}\right)}{\varepsilon^{2}}+P\left(\langle M\rangle_{\tau}>\delta\right)
$$

Hint: use the previous exercise. In order to show that assumption (0.1) is satisfied, take a localizing sequence for N_{t} and use Fatou lemma.
4. $\left\{M_{t}^{(n)}(\omega)\right\}_{n \in \mathbb{N}}$ a sequence of \mathbb{F}-local martingales and τ a \mathbb{F}-stopping time. Show that as $n \longrightarrow \infty$

$$
\left\langle M^{(n)}\right\rangle_{\tau} \xrightarrow{P} 0 \quad \Longrightarrow \quad \sup _{0 \leq s \leq \tau}\left|M_{s}^{(n)}(\omega)\right| \xrightarrow{P} 0
$$

with convergence in probability.
5. Let $\left(X_{i}: i \leq \mathbb{N}\right)$ be i.i.d. \mathbb{R}-valued random variables with cumulative distribution function $F(t)=P\left(X_{i} \leq t\right)$.
For sample size $n \in \mathbb{N}$, consider the empirical process

$$
F^{(n)}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(X_{i}(\omega) \leq t\right) \quad t \in \mathbb{R}
$$

in its own time-continuous filtration $\mathbb{F}^{(n)}=\left(\mathcal{F}_{t}^{(n)}: t \in \mathbb{R}\right)$, where $\mathcal{F}_{t}^{(n)}=\sigma\left(F^{(n)}(s): s \leq t\right), t \in \mathbb{R}$.
(a) Assuming that $t \mapsto F(t)$ is continuous, compute the compensator (dual predictable projection) $A^{(n)}(t)$ of $F^{(n)}(t)$ in the time continuous filtration $\mathbb{F}^{(n)}$. Note that the time parameter runs over the all real line \mathbb{R}.
(b) What is the compensator when the cumulative distribution function $F(t)$ is cadlag with jumps ?
(c) Consider the martingale

$$
M^{(n)}(t)=F^{(n)}(t)-A^{(n)}(t)
$$

show that it is bounded in $L^{2}(P)$. Compute the quadratic variation $\left[M^{(n)}\right]_{t}$ and the predictable variation $\left\langle M^{(n)}\right\rangle_{t}$
(d) Compute an upper bound for

$$
P\left(\sup _{t \in \mathbb{R}}\left|M^{(n)}(t)\right|>\varepsilon\right)
$$

(e) Note that for $k \leq n, F^{(k)}(t)$ and $M^{(k)}(t)$ are adapted to the $\mathbb{F}^{(n)}$ filtration.
Compute the quadratic covariation $\left[M^{(k)}, M^{(n)}\right]_{t}$ and predictable covariation $\left\langle M^{(k)}, M^{(n)}\right\rangle_{t}$
(f) Compute the covariance

$$
E\left(F^{(n)}(t) F^{(k)}(s)\right)-E\left(F^{(n)}(t)\right) E\left(F^{(k)}(s)\right)
$$

(g) Show that

$$
\lim _{n \rightarrow \infty} \sup _{t \in \mathbb{R}}\left|M^{(n)}(t)\right|=0
$$

in $L^{2}(P)$.
Hint: see first what happens with $n=1$. Compute the compensator of the single jump counting process $N^{(i)}(t):=\mathbf{1}\left(X_{i} \leq t\right)$.
Note also that when $F(t)$ is continuous one can use Kurtz theorem.

