
Stochastic analysis, spring 2017, Home Exam

1. Let (B
(1)
t , . . . , B

(n)
t : t ≥ 0) continuous local martingales in the filtration

F with

〈B(i), B(i)〉t = t,

〈B(i), B(j)〉t = EP
(
B

(i)
t B

(j)
t

)
= cijt, for i 6= j, .

with cij ∈ [−1, 1] constant.

(a) Each B(i)
t is a Brownian motion. Why ?

Since Bt is a continuous and square integrable martingale E(B2
t ) =

E(〈B,B〉t) = E(〈B〉t) = t. It is easy to see that at time t = 0 this
implies B0 = 0 P -almost surely (show it!).

(b) Assume B(i)
0 = 0 at time t = 0.

Use inducively Ito formula and Fubini Theorem to compute the joint
moment at time t:

EP
(
B

(1)
t . . . B

(n)
t

)
=

 0 if n is odd
tn/2

∑
pairings

∏
pairs{i,j}

cij if n is even

where when n is even, the sum is over all pairings of 1, . . . , n into n/2
pairs, where the pairs are disjoint and the elements of the pairs are
distince. For each pairing we then take the product over the pairs of
the pairing.
Hint: Let’s see how this works in practice, for example

EP
(
B

(1)
t B

(2)
t B

(3)
t B

(4)
t ) = (c12c34 + c13c24 + c14c23

)
t2

since we can form disjoint pairs in three possible way, and each pairing
contributes with the product of two covariances.
Another example would be

EP
(
(B

(1)
t )2B

(2)
t B

(3)
t

)
= (c11c23 + 2c12c13)t2

and

EP
(
(B

(1)
t )2(B

(2)
t )2

)
= (c11c22 + 2c212)t2

This can be proved by using Ito formula to write the semimartingale
decomposition of the product, and then arguing that the martingale
part has zero mean.
Hint: Compute the semimartingale decomposition of the product
B

(1)
t . . . B

(n)
t , and show that the local martingale is a true martingale

( which therefore has zero expectation).
This is Wick’s formula ( in the literature usually the proof is based
on the moment generating function ).

2. (a) Show that an essentially bounded local martingale ( that is for some
K <∞, P (|Mt| < K) = 1 ∀t > 0). is a true martingale.
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(b) Let Bt a Brownian motion in the filtration F, and
Zt = exp

(
Mt − t/2

)
.

Show that Zt is a continuous martingale which is not uniformly in-
tegrable.

3. Let (Bt) be a standard Brownian motion, denote i =
√
−1 as usual. Recall

that

Z(t, θ) = exp

(
iθBt +

1

2
θ2t

)
=

cos(θBt) exp(θ2t/2) + i sin(θBt) exp(θ2t/2) = Mt(θ) + iNt(θ)

is a complex valued martingale ∀θ ∈ R, that is both real and imaginary
parts are martingales.

Compute the brackets 〈M(θ),M(θ)〉t, 〈N(ϕ), N(ϕ)〉t, 〈M(θ), N(ϕ)〉t.

Note that for different angles θ, ϕ you get different martingales,

Mt(θ) + iNt(θ) and Mt(ϕ) + iNt(ϕ).

the question is to compute the quadratic cross-covariation also when θ and
ϕ are different.

4. In the setting of exercise 2,

Compute the Ito-Clarck martingale representation of the square integrable
random variable

XT = sin(θBT ) cos(ϕBT ) = E
(
sin(θBT ) cos(ϕBT )

)
+

∫ T

0

YsdBs

i.e. compute the expectation and find the adapted integrand process Ys.

Hint. rewrite

XT = cMT (θ)NT (ϕ)

with c = exp(−(θ2 + ϕ2)T/2), and use integration by parts, to find the
martingale decomposition of the product (Mt(θ)Nt(ϕ)).

Hint: XT (ω) ∈ [−1, 1] is a bounded random variable, simply because
sin(x) and cos(x) are bounded functions. On a probability space, since
P (Ω) = 1, it follows that L∞(Ω, P ) ⊆ Lq(Ω, P ) for all powers q, with
‖ X ‖Lq(∞)≤‖ X ‖L∞(P ).

5. Let XT = exp(θBT )B2
T , where θ ∈ R.

a) Show that XT ∈ L2(Ω).

Hint: Note that E(exp(θBT )) = exp(θ2T/2) <∞ ∀θ ∈ R.
Note also that the exponential function grows faster than any polynomial,
in particular for all ε > 0 ∃Cε > 0 such that

x2 ≤ Cε
(
exp(εx) + exp(−εx)

)
∀x

Using this it is easy to show a.
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b) Compute E(XT ).

Hint: the idea is that exp(θBT −θ2/2) corresponds to a change of measure
from the measure P to the measure Pθ with likelihood ratio

dPθ
dP

(ω) = exp(θBT − θ2/2)

Under the new measure Pθ, BT has Gaussian distribution with mean θT
and variance T . This follows simply by writing the product of exponentials
as exponential of sum and completing the squares, inside the integral

1√
2πT

∫
R

exp
(
− x

2

2T

)
exp(θx)x2dx

c) Compute the Ito-Clarck martingale representation of XT . Hint: use Ito
formula and integration by parts.

6. (a) Solve the following Ito SDE

a) Xt = x+

∫ t

0

√
1−X2

sdBs −
1

2

∫ t

0

Xsds

b) Xt = x+

∫ t

0

√
1 +X2

sdBs +
1

2

∫ t

0

Xsds

c) Xt = x+

∫ t

0

√
1 +X2

sdBs +

∫ t

0

(√
1 +X2

s +
1

2
Xs

)
ds

b) Xt = x+

∫ t

0

exp(−Xs)dBs +
1

2

∫ t

0

exp(−2Xs)ds

c) Xt = x+
1

3

∫ t

0

(Xs)
1/3ds+

∫ t

0

(Xs)
2/3dBs

Hint: assume that Xt = ϕ(Bt) and use Ito formula to obtain an
equation for ϕ.
In c) you can assume first that Xt = ϕ(Bt + a(t)) and after using Ito
formula, choose the function a(t) to simplify the differential equation
for ϕ.

(b) Rewrite the SDE in Stratonovich form.

Remark in general is not always possible to find an explicit solutions of
a SDE.

7. Let B(1) and B(2) two independent Brownian motions under the measure
P and let

Xt = x(0)t+ x(1)B
(1)
t + x(2)B

(2)
t

Yt = y(0)t+ y(1)B
(1)
t + y(2)B

(2)
t

where x(i), y(i) are deterministic constants, i = 0, 1, 2.

Using Girsanov theorem, construct a probability measure Q equivalent to
P on finite intervals [0, t] such that both Xt and Yt are Q-martingales.

Under which conditions on the coefficients x(i), y(i) such Q is unique ?
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8. We consider a family of linear SDE in Ito sense

Xt = x+

∫ t

0

Xsθds+

∫ t

0

XsσdB
θ
s

where (Bθt ) is Brownian motion under the measure P θ. We think as σ 6= 0
fixed, while θ ∈ R is a parameter. Note that

Bθt = B0
t −

θ

σ
t

where B0
t is a Brownian motion under P 0 which corresponds to the value

θ = 0.

a) Compute and the likelihood ratio process

Zt(θ) =
dP θt
dP 0

t

and find a representation as stochastic integral with respect to the inte-
grator (Xt).

b) Show that Zt(θ) is a martingale under P 0.

c) Compute the logarithmic derivative

St(θ) :=
d

dθ
logZt(θ)

and show that St(θ) is a martingale under P θ.

d) Assuming now that the parameter θ is unknown, compute the maximum
likelihood estimator θ̂T for a given a realization (Xt(ω) : t ∈ [0, T ]). In
other words, find the argument θ̂ which maximizes log(Zt(θ, ω)) for the
observed realization.
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