UH Stochastic analysis I, Spring 2017, Exercise-4 (14-21.3 2017)

We will discuss these exercises on tuesday 14.3 in exercise class from 10-
12, room D123.

We recall the integration by parts formula for cadlag functions with finite
variation:

XY (t) — / X(s / Y (s—)X(ds) = (0.1)

/ X(s /0 ¥ (s)X (ds)
- /O X (s—)Y (ds) + /0 Y (s—)X(ds) + [X, Y],
where [X,Y]; = _, AX(s)AY(s) is the cross variation.

For cadlag functions X (¢) with finite variation on compacts and differen-
tiable functions f(z), we have the change of variable formula

Fx) - fxg) = [ U

s<t

(0.2)

Recall also that if Y(¢) is a F-adapted cadlag process with integrable
variation on compact intervals

E(Vary () = E( /0 t |Y(ds)|> < ooV,

then its dual F-predictable projection Y? exists and M (t) := Y (t) — YP(¢) is
a F-martingale. If X (¢) is F-predictable and

p( [ v ) < oo
(XY = (/O.X(S)Y(ds)>p - /O'X(s)yp(ds)
o= [ xnras = [ X - [ xreas),

then

and

oL enx () + 0 (£009) = £ - GHOs-)AX()



is a F-martingale. Note also that if X(s) is a cadlag F-adapted process, it is
F-optional and its left limit X (s—) = lim,4; X (r) is F-predictable.

1. (Discrete time embedded into continuous time). Consider in discrete
time a process (X, : n € N), and a discrete filtration, (F, : n €
N), where X,, in not necessarily {F,}-measurable. Assume that X is
integrable or more in general locally integrable in the filtration (F,, ) en.

We imbed the discrete time processes and filtrations, into continous
time processes X (t) and filtration F = {F; : t > 0) which are right-
continuous, and piecewise constant between the jump times n € N:

Fi=F,and X(t,w) = X, (w) Vte[n,n+1),

Show that in continuous time, the F-optional and F-predictable projec-
tions of the imbedded process X are respectively

°X(t) = E(X,|F.) t€nn+1)and "X(t) = X (1) if t ¢ N, and PX (n) = E(X,,|F,1)

Show that the dual F-optional projection of X is

Xo= Y B(X, - X,L|F) = 3 B(AX(s)F)

0<n<t 0<s<t

and the dual F- predictable projection is

XP= > E(Xy—Xou|Fat) = > E(AX(s)|Feo) = ) %E(Ax(sﬂﬂ)

0<n<t 0<s<t 0<s<t

2. Consider a Bernoulli counting process in the discrete time filtration

{fk:kEN}

N(k) = ZXk(W)
where
P(X;=1|Fi1)(w)=1—P(X; =1|F_1)(w) =p € (0,1)

e Imbed now the Bernoulli process N and the filtration in continuous
time, and compute the projections °N,? N, N°, NP.



e For a > 0 show that
aMr =1+ Z(a — 1)a"-'AN;.
j=1

and use this identity to compute Ea™".

3. Recall that the process X is stochastically continuous, if for each ¢ and
e>0:

lim P{|Xt+h — Xt| > 6} = 0.
h—0

Show that the Bernoulli process (imbedded to continuous time) is not
stochastically continuous.

4. Show that any increasing process X, X; € L(P), with continuous ex-
pectation is stochastically continuous. Continuous expectation means
that the map ¢t — E X, is continuous at each point ¢. Check, using this
fact, that Poisson process is stochastically continuous.

5. A piecewise constant cadlag process N(t) with N(0) =0 and AN(¢) €
{0,1} Vt is called a counting process.

(a) Use the integration parts formula (0.1)) with X (¢) = Y (t) = N(¢)
to compute (N_ - N); and (N - N);.

(b) For the next questions we assume that N is F-adapted and P(N; <
o0) = 1Vt > 0. Show that an F-adapted counting process is locally
bounded. Hint: find a sequence of stopping times 7,,(w) 1 oo such
that N, n(w) < C, Yw, t, with constants C,, < oo.

(c) Assume that N is F-adapted and P(N; < oo) = 1, and show
that the dual predictable projection N? exists, and ANP(t) =
NP(t) — NP(t—) € [0,1].

(d) Show also that

P{N, > ¢} < EA;,Ve>0.

(e) Prove that N(t) is stochastically continuous if and only if ¢
NP(t) is continuous.

6. Assume that (Y;)k > 1, with Yy = 0, is a sequence of independent
Bernoulli random variables with parameter py: P{Y; = 1} = pj. Define
a counting process N on [0, 1) by

L1 -1

N, = Z Yy
k=0
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10.

and put N; = lim;_,; V;. Show that the process IV is non-exploding at
the time t = 1 if and only if ), py < 0o. Non-exploding: P(N; < 00) =
1. Show also that if NV is non-exploding at ¢t = 1, then EN; < oo.

. Assume that F' is continuous and f is right-continuous with bounded

variation. Show that ¢ — F(f(t)) is right-continuous. If F' € C!, i.e. F
is differentiable with a continuous derivative, then F' o f has bounded
variation on compacts

Let N(t) be a Poisson process with intensity A > 0, with cadlag trajec-
tories and a filtration F = (F; : t > 0) such that M(t) = (N(t) — At) is
a F-martingale.

(a) What are the F-optional and F-predictable projections °N and
°N ?

(b) Show that N(¢) has dual F-optional and dual F-predictable pro-
jections, find N° and NP.

(c) Let N(t) be the Poisson process in a filtration F as in Exercise 1.
Use inductively the integration by part formula (0.1]) with X (¢) =
N(t)*1 Y (t) = N(t) to compute the moments E(N (t)¥).

. We compute the Laplace transform of the A\-Poisson process using mar-

tingales.

For 0 > 0 let f(z) = exp(—0z), and use the change of variable for-
mula for cadlag functions X (¢) with finite variation on compacts and
differentiable f(x)

f(Xe) = f(Xo) = g(X(S))X(dS) + Y (F(X(s)) = F(X(s7))

x
0 8 s<t

_of
Ox

and a martingale argument to compute the Laplace transform 6 +—

E(exp(—0N(t))), 6 > 0 of the A-Poisson process N (t).

A theorem by Thomas Kurtz In this exercise we use a martingale
argument together with the change of variable formula (0.2]) to compute
Laplace transforms.

Let 71, ... 7, F-stopping times, and let N;(t) = 1(7; < t). Let A; = N7,
the compensator or dual F-predictable projection of N; (which exists,
why 7)

We assume that

X(s=))AX(s)



and that the compensators A;(t) are continuous processes.

We show that the stopped compensators Ai(71),..., A, (71) are ii.d.
1-exponential random variables, i.e.

P(A(11) > @1, Ai(11) > 2, ) = exp(—zgn]), x; >0

Jj=1

In order to show it we compute the joint Laplace transform of A, ... A, ,
and show that for V6; > 0

E(exp (—éelz\j(n)» = H (1j9j) (0.3)

which is the product of the Laplace transform of i.i.d. 1-exponential
random variables.

(a) Use the change of variable formula to write an integral represen-
tation of

G(0;,t) = (14 0;)" D exp(—0;A,(t))

and show that if 6; > 0, (;(¢) is an uniformly integrable F-
martingale.

(b) Show that
[G(0:), G ()]s = > AG(0:,5)A(0;,8) =0 Vi j

s<t

Hint:
[N, NjJe = > AN;(HAN;(t) =0 Vi # j

s<t

(c) Use the integration by part formula for product of finite variation
processes, to find an integral representation for the product

Z(0,t) = HCJ(GM)

and show that V0 = (01, ...,0,,) € R, Z(0,t) is also an uniformly
integrable martingale.

(d) Compute E(Z(6,00)) to prove



