
UH Stochastic analysis I, Spring 2017, Exercise-4 (14-21.3 2017)

We will discuss these exercises on tuesday 14.3 in exercise class from 10-
12, room D123.

We recall the integration by parts formula for cadlag functions with finite
variation:

X(t)Y (t)−X(0)Y (0) =

∫ t

0

X(s)Y (ds) +

∫ t

0

Y (s−)X(ds) = (0.1)∫ t

0

X(s−)Y (ds) +

∫ t

0

Y (s)X(ds)

=

∫ t

0

X(s−)Y (ds) +

∫ t

0

Y (s−)X(ds) + [X, Y ]t

where [X, Y ]t =
∑

s≤t ∆X(s)∆Y (s) is the cross variation.

For cadlag functions X(t) with finite variation on compacts and differen-
tiable functions f(x), we have the change of variable formula

f(Xt)− f(X0) =

∫ t

0

∂f

∂x
(X(s))X(ds) +

∑
s≤t

(
f(X(s))− f(X(s−))− ∂f

∂x
(X(s−))∆X(s)

)
.

(0.2)

Recall also that if Y (t) is a F-adapted cadlag process with integrable
variation on compact intervals

E(VarY (t)) = E

(∫ t

0

|Y (ds)|
)
<∞∀t,

then its dual F-predictable projection Y p exists and M(t) := Y (t)− Y p(t) is
a F-martingale. If X(t) is F-predictable and

E

(∫ t

0

|X(s)| |Y (ds)|
)
<∞∀t,

then

(X · Y )p =

(∫ ·
0

X(s)Y (ds)

)p
=

∫ ·
0

X(s)Y p(ds)

and

(X ·M)t =

∫ t

0

X(s)M(ds) =

∫ t

0

X(s)Y (ds)−
∫ t

0

X(s)Y p(ds).

1



is a F-martingale. Note also that if X(s) is a cadlag F-adapted process, it is
F-optional and its left limit X(s−) = limr↑sX(r) is F-predictable.

1. (Discrete time embedded into continuous time). Consider in discrete
time a process (Xn : n ∈ N), and a discrete filtration, (Fn : n ∈
N), where Xn in not necessarily {Fn}-measurable. Assume that X is
integrable or more in general locally integrable in the filtration (Fn)n∈N.

We imbed the discrete time processes and filtrations, into continous
time processes X(t) and filtration F = {Ft : t ≥ 0) which are right-
continuous, and piecewise constant between the jump times n ∈ N:

Ft = Fn and X(t, ω) = Xn(ω) ∀t ∈ [n, n+ 1),

Show that in continuous time, the F-optional and F-predictable projec-
tions of the imbedded process X are respectively

oX(t) = E
(
Xn

∣∣Fn) t ∈ [n, n+ 1) and pX(t) = oX(t) if t 6∈ N, and pX(n) = E
(
Xn

∣∣Fn−1)
Show that the dual F-optional projection of X is

Xo
t =

∑
0≤n≤t

E
(
Xn −Xn−1

∣∣Fn) =
∑
0≤s≤t

E
(
∆X(s)|Fs)

and the dual F- predictable projection is

Xp
t =

∑
0≤n≤t

E
(
Xn −Xn−1

∣∣Fn−1) =
∑
0≤s≤t

E
(
∆X(s)|Fs−) =

∑
0≤s≤t

lim
r↑s

E
(
∆X(s)|Fr)

2. Consider a Bernoulli counting process in the discrete time filtration
{Fk : k ∈ N}

N(k) =
k∑
i=1

Xk(ω)

where

P
(
Xi = 1

∣∣Fi−1)(ω) = 1− P
(
Xi = 1

∣∣Fi−1)(ω) = p ∈ (0, 1)

• Imbed now the Bernoulli processN and the filtration in continuous
time, and compute the projections oN, pN,N o, Np.
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• For a > 0 show that

aNn = 1 +
n∑
j=1

(a− 1)aNj−1∆Nj.

and use this identity to compute EaNn .

3. Recall that the process X is stochastically continuous, if for each t and
ε > 0:

lim
h→0

P{|Xt+h −Xt| > ε} = 0.

Show that the Bernoulli process (imbedded to continuous time) is not
stochastically continuous.

4. Show that any increasing process X, Xt ∈ L(P ), with continuous ex-
pectation is stochastically continuous. Continuous expectation means
that the map t 7→ EXt is continuous at each point t. Check, using this
fact, that Poisson process is stochastically continuous.

5. A piecewise constant cadlag process N(t) with N(0) = 0 and ∆N(t) ∈
{0, 1} ∀t is called a counting process.

(a) Use the integration parts formula (0.1) with X(t) = Y (t) = N(t)
to compute (N− ·N)t and (N ·N)t.

(b) For the next questions we assume thatN is F-adapted and P (Nt <
∞) = 1 ∀t ≥ 0. Show that an F-adapted counting process is locally
bounded. Hint: find a sequence of stopping times τn(ω) ↑ ∞ such
that Nτn∧t(ω) ≤ Cn ∀ω, t, with constants Cn <∞.

(c) Assume that N is F-adapted and P (Nt < ∞) = 1, and show
that the dual predictable projection Np exists, and ∆Np(t) =
Np(t)−Np(t−) ∈ [0, 1].

(d) Show also that

P{Nt ≥ ε} ≤ EAt,∀ ε > 0.

(e) Prove that N(t) is stochastically continuous if and only if t 7→
Np(t) is continuous.

6. Assume that (Yk)k ≥ 1, with Y0 = 0, is a sequence of independent
Bernoulli random variables with parameter pk: P{Yk = 1} = pk. Define
a counting process N on [0, 1) by

Nt
.
=

b 1
1−t
−1c∑

k=0

Yk
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and put N1 = limt→1Nt. Show that the process N is non-exploding at
the time t = 1 if and only if

∑
k pk <∞. Non-exploding: P (N1 <∞) =

1. Show also that if N is non-exploding at t = 1, then EN1 <∞.

7. Assume that F is continuous and f is right-continuous with bounded
variation. Show that t 7→ F (f(t)) is right-continuous. If F ∈ C1, i.e. F
is differentiable with a continuous derivative, then F ◦ f has bounded
variation on compacts

8. Let N(t) be a Poisson process with intensity λ > 0, with cadlag trajec-
tories and a filtration F = (Ft : t ≥ 0) such that M(t) = (N(t)− λt) is
a F-martingale.

(a) What are the F-optional and F-predictable projections oN and
oN ?

(b) Show that N(t) has dual F-optional and dual F-predictable pro-
jections, find N o and Np.

(c) Let N(t) be the Poisson process in a filtration F as in Exercise 1.
Use inductively the integration by part formula (0.1) with X(t) =
N(t)k−1, Y (t) = N(t) to compute the moments E(N(t)k).

9. We compute the Laplace transform of the λ-Poisson process using mar-
tingales.

For θ > 0 let f(x) = exp(−θx), and use the change of variable for-
mula for cadlag functions X(t) with finite variation on compacts and
differentiable f(x)

f(Xt)− f(X0) =

∫ t

0

∂f

∂x
(X(s))X(ds) +

∑
s≤t

(
f(X(s))− f(X(s−))− ∂f

∂x
(X(s−))∆X(s)

and a martingale argument to compute the Laplace transform θ 7→
E
(
exp(−θN(t))

)
, θ > 0 of the λ-Poisson process N(t).

10. A theorem by Thomas Kurtz In this exercise we use a martingale
argument together with the change of variable formula (0.2) to compute
Laplace transforms.

Let τ1, . . . τm F-stopping times, and let Nj(t) = 1(τj ≤ t). Let Λj = Np
j ,

the compensator or dual F-predictable projection of Nj (which exists,
why ?)

We assume that

P (τi = +∞) = P (τi = τj) = 0 ∀i 6= j
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and that the compensators Λj(t) are continuous processes.

We show that the stopped compensators Λ1(τ1), . . . ,Λm(τ1) are i.i.d.
1-exponential random variables, i.e.

P
(
Λ1(τ1) > x1, . . . ,Λ1(τ1) > xn

)
= exp

(
−

m∑
j=1

xj

)
, xj > 0

In order to show it we compute the joint Laplace transform of Λτ1 , . . .Λτm

and show that for ∀θj > 0

E

(
exp

(
−

m∑
j=1

θ1Λj(τi)

))
=
∏
j

1

(1 + θj)
(0.3)

which is the product of the Laplace transform of i.i.d. 1-exponential
random variables.

(a) Use the change of variable formula to write an integral represen-
tation of

ζj(θj, t) = (1 + θj)
Nj(t) exp

(
−θjΛj(t)

)
and show that if θj > 0, ζj(t) is an uniformly integrable F -
martingale.

(b) Show that

[ζi(θi), ζj(θ)]t =
∑
s≤t

∆ζi(θi, s)∆ζj(θj, s) = 0 ∀i 6= j

Hint:

[Ni, Nj]t =
∑
s≤t

∆Ni(t)∆Nj(t) = 0 ∀i 6= j

(c) Use the integration by part formula for product of finite variation
processes, to find an integral representation for the product

Z(θ, t) =
m∏
j=1

ζj(θj, t)

and show that ∀θ = (θ1, . . . , θm) ∈ Rm
+ , Z(θ, t) is also an uniformly

integrable martingale.
(d) Compute E

(
Z(θ,∞)

)
to prove (0.3)
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