UH Stochastic analysis I, Spring 2017, Exercise-2 (8.2 2017)

In all exercises $(B_t : t \ge 0)$ is a Brownian motion on the probability $(\Omega, \mathcal{F}_t, P)$, in the filtration $\mathbb{F} = (\mathcal{F}_t : t \ge 0)$, which means that B is \mathbb{F} -adapted and for $0 \le s \le t$, $(B_t - B_s) \perp \mathcal{F}_s$ w.r.t. P.

1. (a) Show that the Riemann integral

$$A_t = \int_0^t B_u(\omega) du$$

is a Gaussian random variable and compute its mean and variance. Hint: compute the Gaussian law of a Riemann sum approximation and take limit in distribution.

(b) Show by a direct computation that

$$M_t = B_t^3 - 3\int_0^t B_u du$$

is a martingale in the Brownian filtration. Hint: for $0 \le s \le t$,

$$M_t = \{B_s + (B_t - B_s)\}^3 - 3\int_0^s B_u du - 3(t - s)B_s - 3\int_s^t (B_u - B_s)du$$

2. Let $(\tau_n(\omega) : n \in \mathbb{N})$ a sequence of stopping times in the \mathbb{F} filtration. Show that

$$\tau_*(\omega) = \inf_n \{ \tau_n(\omega) \}, \quad \tau^* = \sup_n \{ \tau_n(\omega) \}$$

are \mathbb{F} -stopping times.

3. Consider two filtrations $\mathbb{F} = \{\mathcal{F}_t : t \ge 0\}$ and $\mathbb{G} = \{\mathcal{G}_t : t \ge 0\}$ on the same probability space (Ω, \mathcal{F}, P) . Assume that $\mathbb{F} \subseteq \mathbb{G}$ meaning that $\mathcal{F}_t \subseteq \mathcal{G}_t \ \forall t$.

Show that if M_t is a (P, \mathbb{G}) -martingale and it is also \mathbb{F} -adapted, then it is a martingale also with respect to the smaller filtration \mathbb{F} .

4. Let B_t, W_t P-independent Brownian motion (on the same probability space). We define their cross-variation (or quadratic covariation as)

$$[B,W]_{t} := \lim_{\Delta(\Pi^{n})} \sum_{k} \left(B_{t_{k}^{n} \wedge t} - B_{t_{k-1}^{n} \wedge t} \right) \left(W_{t_{k}^{n} \wedge t} - W_{t_{k-1}^{n} \wedge t} \right)$$
(0.1)

where the limit is taken in $L^2(P)$ for a sequence of partitions $\Pi^n = \{0 = t_0^n < t_1^n < \cdots < t_k^n < \dots\}$ where $\lim_{k \to \infty} t_k^n \to \infty$ and

$$\Delta(\Pi^n) = \sup_k |t_k^n - t_{k-1}^n| \to 0 \text{ as } n \to \infty$$

- (a) Show that the $L^2(P)$ limit is $[B, W]_t = 0$ independently of the choice the sequence of partitions $\{\Pi^n\}$.
- (b) Show that if the sequence of partitions is refining, i.e. $\Pi^n \subseteq \Pi^{n+1}$ $\forall n$, then we have also *P*-almost sure convergence in (0.1)
- (c) Show by direct calculation that the product $M_t = B_t W_t$ is a martingale in the Brownian filtration Hint: as in the proof of the result for the quadratic variation of Brownian motion $[B]_t = t$,
- 5. Let $\tau(\omega) \in [0, +\infty]$ be a random time, $F(t) = P(\tau \le t)$ for $t \in [0, \infty)$. Consider the single jump counting process $N_t(\omega) := \mathbf{1}(\tau(\omega) \le t)$ which generates the filtration $\mathbb{F} = (\mathcal{F}_t)$ with $\mathcal{F}_t^N = \sigma(N_s : s \le t)$.
 - (a) Show that τ is a stopping time in the filtration \mathbb{F} .
 - (b) Show that first that for every Borel function f(x), the random variable

$$f(\tau(\omega))\mathbf{1}(\tau(\omega) \le s)$$

is \mathcal{F}_s -measurable.

(c) Define the *cumulative hazard function*

$$\Lambda(t) = \int_0^t \frac{1}{1 - F(s-)} F(ds)$$

where $F(s-) = P(\tau < s)$ denotes the limit from the left. Show that

$$M_t = N_t - \Lambda_{t \wedge \tau}$$

is a an $\mathbb F\text{-martingale}.$

Hint: use the definition, and show that for $s \leq t$ and every $A \in \mathcal{F}_s$

$$E_P\left((N_t - N_s)\mathbf{1}_A\right) = E_P\left((\Lambda_{t\wedge\tau} - \Lambda_{s\wedge\tau})\mathbf{1}_A\right)$$

It turns out that it is enough to do the computation for $A = \{\omega : \tau(\omega) > s\}$ (why ?). Fubini's theorem may be also useful.

(d) Assume that $t \mapsto F(t)$ and therefore also $t \mapsto \Lambda(t)$ are continuous, which means $P(\tau = t) = 0 \ \forall t \in \mathbb{R}^+$.

Show that Λ_{τ} has 1-exponential distribution:

$$P(\Lambda_{\tau} > x) = \exp(-x), \quad x \ge 0$$

Hint: one line of proof compute the Laplace transform

$$\mathcal{L}(\theta) := E_P \left(\exp(-\theta \Lambda_{\tau}) \right) \quad \theta > 0$$

and compare it with the Laplace transform of the 1-exponential distribution.

- (e) Show that the martingale M_t is uniformly integrable, what is M_{∞} ?.
- 6. Let $\theta \in \mathbb{R}$, and $i = \sqrt{-1}$ the imaginary unit Show that

$$E_P(\exp(i\theta B_t)) = \exp(-\frac{1}{2}\theta^2 t)$$

Hint: Use complex integration over the rectangular contour delimited by in the complex plane by the points $R, (R + i\theta), (-R + i\theta), -R$ with $R \in \mathbb{R}$ and let $R \to \infty$.

7. For $\theta \in \mathbb{R}$, consider now

$$M_t = \exp\left(i\theta B_t + \frac{1}{2}\theta^2 t\right) = \left\{\exp\left(\frac{1}{2}\theta^2 t\right)\cos(\theta B_t) + \sqrt{-1}\exp\left(\frac{1}{2}\theta^2 t\right)\sin(\theta B_t)\right\} \in \mathbb{C}$$

where $i = \sqrt{-1}$ is the imaginary unit.

Recall that $E(\exp(i\theta G)) = \exp(-\theta^2 \sigma^2/2)$ when $G(\omega) \sim \mathcal{N}(0, \sigma^2)$.

- Show that M_t is complex valued \mathbb{F} -martingale, which means that real and imaginary parts are \mathbb{F} -martingales.
- Show that $\lim_{t\to\infty} |M_t(\omega)| = \infty$