
UH Stochastic analysis I, Spring 2017, Exercise-1 (27.1 and 1.2
2017)

In all exercises (Bt : t ≥ 0) is a Brownian motion on the probability
(Ω,Ft, P ), in the filtration F = (Ft : t ≥ 0), which means that B is F-
adapted and for 0 ≤ s ≤ t, (Bt −Bs) ⊥⊥ Fs w.r.t. P .

1. (Computer exercise)

(a) Use the octave function levybm.m downloadable from the course
web-page to plot some paths of the Brownian motion sampled by
using Paul Levy construction.

(b) write an octave program plotting a path of the two dimensional
Brownian motion Bt = (B

(1)
t , B

(2)
t ) with values in R2 on the time

interval [0, 1]. Here B(1)
t and B(2)

t are two independent Brownian
motions.

If you need to install the octave scientific programming language, you
can download it from https://www.gnu.org/software/octave/

2. Consider a standard Gaussian random variable G(ω) with probability
density

φ(x) =
1√
2π

exp
(
−x2/2

)
(a) Check that

d

dx
φ(x) = −xφ(x)

(b) Compute

EP (exp(λG2)
)
, λ ∈ R

(c) Use Fubini to prove following Gaussian integration by parts for-
mula: if

f(x) = f(0) +

∫ x

0

f ′(t)dt

with EP (|f ′(G)|) <∞, then

EP
(
f ′(G)

)
= EP

(
f(G)G

)
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https://wiki.helsinki.fi/display/mathstatKurssit/Stochastic+analysis+I%2C+spring+2017?preview=/198320251/210426596/levybm.m
https://www.gnu.org/software/octave/


(d) Use the Gaussian integration by parts formula to compute by in-
duction the Gaussian moments

EP (G2n
)

=
(2n)!

n!2n

3. (a) Show that

(t, x) 7→ p(t;x, y) :=
1√
2πt

e−(x−y)
2/2t

solves the partial differential equation

∂p

∂t
=

1

2

∂2p

∂x2
.

(b) Show that

(t, x) 7→ p(µ)(t;x, y) :=
1√
2πt

e−(x−y−µt)
2/2t

solves

∂p

∂t
=

1

2

∂2p

∂x2
+ µ

∂p

∂x
.

For which equation the function

(t, y) 7→ p(µ)(t;x, y)

is a solution?

4. Let Bt be a Brownian motion.

(a) Let c > 0. Show that B(c)
t = (Bt+c − Bc), t ≥ 0 is a Brownian

motion in its own filtration.
(b) Show that for c > 0, B̂t := c−1/2Bct, t ≥ 0 is a Brownian motion in

its own filtration. We say that B is self-similar of index α = 1/2.
Does this transformation preserve the law of the Poisson process
?

(c) Show that B̌t := tB1/t t > 0 is a Brownian motion (in its own filt-
ration), Does this transformation preserve the law of the Poisson
process ?

(d) Show that limt↓0 B̌t = 0 P -almost surely.
Hint: use Chebychev inequality together with the Borel Cantelli
lemma.
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5. Let (η̇n(t) : n ∈ N) an orthonormal system of functions in L2([0, 1], dt),
with ∫ 1

0

η̇n(s)η̇m(s)ds = δn,m

for example the Haar system we have used in Paul Lévy’s construction
of Brownian motion, and let (Gn(ω) : n ∈ N) a sequence of i.i.d. Gaus-
sian random variables with E(G) = 0 and E(G2) = 1. show that the
random functions

X
(n)
t (ω) =

n∑
k=1

η̇k(s)Gk(ω)

do not converge in L2(Ω × [0, 1], dP ⊗ dt). Hint: compute the squared
norm

E

(∫ t

0

{ n∑
k=1

Gd(ω)η̇k(s)

}2

ds

)

The next 3 exercises are meant to refresh your background in
discrete time martingale theory.

6. In discrete time, let Mt be a martingale with respect to P and the
filtration (Ft : t ∈ N), such that M0 = 0 and EP (M2

t ) < ∞ ∀t. Show
that

Variance(Mt) =
t∑

s=1

EP
(
{Ms −Ms−1}2

)
Check that the same result holds in continuous time.

7. Consider a symmetric random walk on Z in discrete time,

Mn = X1 + · · ·+Xn

where (Xk : k ∈ N) are independent and identically distributed Ber-
noulli random variables with P (Xn = 1) = P (Xn = −1) = 1/2.

We use the filtration generated by the random walk, F =
(
FXn ), with

FXn = σ(Xk : 0 ≤ k ≤ n).
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(a) Consider the stopping time σ(ω) = min(τa, τb) where a < 0 < b ∈
N, and the stopped martingales (Mt∧σ)t∈N and (M2

t∧σ − t ∧ σ)t∈N.
Show that Doob’s martingale convergence theorem applies and

lim
t→∞

Mt∧σ(ω) = Mσ(ω)

exists P -almost surely.

(b) Consider now (M2
t∧σ−t∧σ). Use the martingale property together

with the reverse Fatou lemma to show that E(σ) < ∞ which
implies P (σ <∞) = 1.

(c) For a < 0 < b ∈ N, compute P (τa < τb).
Hint: a martingale has constant expectation EP (Mt) = EP (M0).
This holds also for the stopped martingale M τ

t = Mt∧τ .

8. Suppose we have an urn which contains at time t = 0 two balls, one
black and one white. At each time t ∈ N we draw uniformly at random
from the urn one ball, and we put it back together with a new ball of
the same colour.

We introduce the random variables

Xt(ω) = 1
{
the ball drawn at time t is black

}
and denote St = (1 +X1 + · · ·+Xt),

Mt = St/(t+ 2), the proportion of black balls in the urn.

We use the filtration {Fn} with Fn = σ{Xs : s ∈ N, s ≤ t}.

i) Compute the Doob decomposition of (St), St = S0 +Nt +At, where
(Nt) is a martingale and (At) is predictable.

ii) Show that (Mt) is a martingale and find the representation of (Mt)
as a martingale transform Mt = (C ·N)t, where (Nt) is the martingale
part of (St) and (Ct) is predictable.

iv) Note that the martingale (Mt)t≥0 is uniformly integrable (Why ?).
Show that P a.s. and in L1 existsM∞ = limt→∞Mt . Compute E(M∞).

v) Show that P (0 < M∞ < 1) > 0 .
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Since M∞(ω) ∈ [0, 1], it is enough to show that 0 < E(M2
∞) < E(M∞)

with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M2
t ),

and than take expectations before going to the limit to find the value
of E(M2

∞).
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