UH Stochastic analysis I, Spring 2017, Exercise-1 (27.1 and 1.2 2017)

In all exercises $(B_t : t \ge 0)$ is a Brownian motion on the probability $(\Omega, \mathcal{F}_t, P)$, in the filtration $\mathbb{F} = (\mathcal{F}_t : t \ge 0)$, which means that B is \mathbb{F} -adapted and for $0 \le s \le t$, $(B_t - B_s) \perp \mathcal{F}_s$ w.r.t. P.

- 1. (Computer exercise)
 - (a) Use the octave function levybm.m downloadable from the course web-page to plot some paths of the Brownian motion sampled by using Paul Levy construction.
 - (b) write an octave program plotting a path of the two dimensional Brownian motion $\mathbf{B}_t = (B_t^{(1)}, B_t^{(2)})$ with values in \mathbb{R}^2 on the time interval [0, 1]. Here $B_t^{(1)}$ and $B_t^{(2)}$ are two independent Brownian motions.

If you need to install the octave scientific programming language, you can download it from https://www.gnu.org/software/octave/

2. Consider a standard Gaussian random variable $G(\omega)$ with probability density

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

(a) Check that

$$\frac{d}{dx}\phi(x) = -x\phi(x)$$

(b) Compute

$$E_P(\exp(\lambda G^2)), \quad \lambda \in \mathbb{R}$$

(c) Use Fubini to prove following *Gaussian integration by parts formula*: if

$$f(x) = f(0) + \int_0^x f'(t)dt$$

with $E_P(|f'(G)|) < \infty$, then

$$E_P(f'(G)) = E_P(f(G)G)$$

(d) Use the Gaussian integration by parts formula to compute by induction the Gaussian moments

$$E_P(G^{2n}) = \frac{(2n)!}{n!2^n}$$

3. (a) Show that

$$(t,x) \mapsto p(t;x,y) := \frac{1}{\sqrt{2\pi t}} e^{-(x-y)^2/2t}$$

solves the partial differential equation

$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^2 p}{\partial x^2} \,.$$

(b) Show that

$$(t,x) \mapsto p^{(\mu)}(t;x,y) := \frac{1}{\sqrt{2\pi t}} e^{-(x-y-\mu t)^2/2t}$$

solves

$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^2 p}{\partial x^2} + \mu \frac{\partial p}{\partial x}.$$

For which equation the function

$$(t,y) \mapsto p^{(\mu)}(t;x,y)$$

is a solution?

- 4. Let B_t be a Brownian motion.
 - (a) Let c > 0. Show that $B_t^{(c)} = (B_{t+c} B_c), t \ge 0$ is a Brownian motion in its own filtration.
 - (b) Show that for c > 0, $\widehat{B}_t := c^{-1/2}B_{ct}$, $t \ge 0$ is a Brownian motion in its own filtration. We say that B is self-similar of index $\alpha = 1/2$. Does this transformation preserve the law of the Poisson process ?
 - (c) Show that $\check{B}_t := tB_{1/t} t > 0$ is a Brownian motion (in its own filtration), Does this transformation preserve the law of the Poisson process ?
 - (d) Show that $\lim_{t\downarrow 0} \check{B}_t = 0$ *P*-almost surely. Hint: use Chebychev inequality together with the Borel Cantelli lemma.

5. Let $(\dot{\eta}_n(t) : n \in \mathbb{N})$ an orthonormal system of functions in $L^2([0, 1], dt)$, with

$$\int_0^1 \dot{\eta}_n(s) \dot{\eta}_m(s) ds = \delta_{n,m}$$

for example the Haar system we have used in Paul Lévy's construction of Brownian motion, and let $(G_n(\omega) : n \in \mathbb{N})$ a sequence of i.i.d. Gaussian random variables with E(G) = 0 and $E(G^2) = 1$. show that the random functions

$$X_t^{(n)}(\omega) = \sum_{k=1}^n \dot{\eta}_k(s) G_k(\omega)$$

do not converge in $L^2(\Omega \times [0,1], dP \otimes dt)$. Hint: compute the squared norm

$$E\left(\int_0^t \left\{\sum_{k=1}^n G_d(\omega)\dot{\eta}_k(s)\right\}^2 ds\right)$$

The next 3 exercises are meant to refresh your background in discrete time martingale theory.

6. In discrete time, let M_t be a martingale with respect to P and the filtration $(\mathcal{F}_t : t \in \mathbb{N})$, such that $M_0 = 0$ and $E_P(M_t^2) < \infty \quad \forall t$. Show that

Variance
$$(M_t) = \sum_{s=1}^{t} E_P(\{M_s - M_{s-1}\}^2)$$

Check that the same result holds in continuous time.

7. Consider a symmetric random walk on \mathbb{Z} in discrete time,

$$M_n = X_1 + \dots + X_n$$

where $(X_k : k \in \mathbb{N})$ are independent and identically distributed Bernoulli random variables with $P(X_n = 1) = P(X_n = -1) = 1/2$.

We use the filtration generated by the random walk, $\mathbb{F} = (\mathcal{F}_n^X)$, with $\mathcal{F}_n^X = \sigma(X_k : 0 \le k \le n)$.

(a) Consider the stopping time $\sigma(\omega) = \min(\tau_a, \tau_b)$ where $a < 0 < b \in \mathbb{N}$, and the stopped martingales $(M_{t \wedge \sigma})_{t \in \mathbb{N}}$ and $(M_{t \wedge \sigma}^2 - t \wedge \sigma)_{t \in \mathbb{N}}$. Show that Doob's martingale convergence theorem applies and

$$\lim_{t \to \infty} M_{t \wedge \sigma}(\omega) = M_{\sigma}(\omega)$$

exists *P*-almost surely.

- (b) Consider now $(M_{t\wedge\sigma}^2 t \wedge \sigma)$. Use the martingale property together with the reverse Fatou lemma to show that $E(\sigma) < \infty$ which implies $P(\sigma < \infty) = 1$.
- (c) For $a < 0 < b \in \mathbb{N}$, compute $P(\tau_a < \tau_b)$. Hint: a martingale has constant expectation $E_P(M_t) = E_P(M_0)$. This holds also for the stopped martingale $M_t^{\tau} = M_{t \wedge \tau}$.
- 8. Suppose we have an urn which contains at time t = 0 two balls, one black and one white. At each time $t \in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables $X_t(\omega) = \mathbf{1} \{ \text{ the ball drawn at time } t \text{ is black } \}$ and denote $S_t = (1 + X_1 + \dots + X_t),$ $M_t = S_t/(t+2),$ the proportion of black balls in the urn. We use the filtration $\{\mathcal{F}_n\}$ with $\mathcal{F}_n = \sigma\{X_s : s \in \mathbb{N}, s \leq t\}.$

i) Compute the Doob decomposition of (S_t) , $S_t = S_0 + N_t + A_t$, where (N_t) is a martingale and (A_t) is predictable.

ii) Show that (M_t) is a martingale and find the representation of (M_t) as a martingale transform $M_t = (C \cdot N)_t$, where (N_t) is the martingale part of (S_t) and (C_t) is predictable.

iv) Note that the martingale $(M_t)_{t\geq 0}$ is uniformly integrable (Why ?). Show that P a.s. and in L^1 exists $M_{\infty} = \lim_{t\to\infty} M_t$. Compute $E(M_{\infty})$.

v) Show that $P(0 < M_{\infty} < 1) > 0$.

Since $M_{\infty}(\omega) \in [0, 1]$, it is enough to show that $0 < E(M_{\infty}^2) < E(M_{\infty})$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M_t^2) , and than take expectations before going to the limit to find the value of $E(M_{\infty}^2)$.