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Abstract

These are lecture notes for the course Spatial modeling and Bayesian inference. These
notes are not comprehensive list of all coarse content but summarize key issues covered
during the course. These notes will be updated during the course. The update history is
the following:

• 3.5.2017 Corrected typos throughout the lecture notes. Improved the treatment of
”valid” (positive (semi)definite) covariance functions. Most of the modifications
are done to section 3 and 3.4.

• 25.4.2017 Added section 5.3 and made few corrections elsewhere in 5

• 24.4.2017 Added section 5 (Point processes) and section 4.2.1

• 11.4.2017 Added section 5

• 3.4.2017 Added section 4.2

• 27.3.2017 Added section 4

• 23.3.2017 Small updates in sections 2.2. and 3.1. Added few proofs for the results
concerning Gaussian processes with additive covariance functions to section 3.4.

• 19.3.2017 Updated section 2.2, Added section 3.

• 10.3.2017 First version of the notes published

1 Preliminaries on spatial data problems and car-
tography
Spatial statistics considers analysis of spatially indexed data. Typical problems are re-
lated to inference and prediction of spatially indexed phenomena. For example, what
is the temperature at a spatial location s = [s1, s2]T and how can we use temperature
measurements to predict the temperature at another location s̃. Similarly we might be
interested in inferring and forecasting temporal trends in spatial phenomena, such as the
temporal change of annual average temperature in Europe.

Spatial problems involve spatially indexed data and traditionally these data are clas-
sified into three types
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• Point referenced data are measured at disjoint locations in space. That is each da-
tum contains the information, y(s), at location s ∈ D, whereD is a spatial(temporal)
area of interest. For example, the temperature at a specific location on the earth.

• Areal data describe phenomena over areal regions. That is, a datum yi describes,
for example, the average temperature over region Ai ⊂ D

• Point pattern data describes the spatial presence pattern of a phenomenon. A classi-
cal example is the spatial pattern of trees in a forest. Here, each datum is a location
of a tree, si, and the aim is to analyze the process that leads to a specific presence
pattern.

In order to analyze spatial data we need a coordinate system for the area of interest.
Here we consider problems on the surface of the earth. There are several coordinate
systems that can be used to describe the location on the earth, the simplest one being the
spherical system where the location is described by the degrees in latitude and longitude
(see also exercises). However, often the purpose is to analyze only a subset of the earth’s
surface. If this subset is small enough, it is typically practical to use a map projection.
There are two main reasons for this. The map projections allow easy visualization on
two dimensional plane and they allow the use of Euclidean metric to measure distances
between locations (see also section 3).

A map projection is a systematic representation of all or part of earth’s surface on a
plane. It is well known fact from topology that it is impossible to construct a distortion-
free representation of a globe on a flat map. Hence, when building maps decision has to be
made which aspects of the reality we want to reconstruct well and which parts of earth’s
surface the map should represent well. For example the map can be planned to be area
or direction preserving. However, we cannot produce a map projection that is distance
preserving1. Hence, a good projection depends on application and there are numerous
projections published. The general strategy to build maps is to use an intermediate sur-
face that can be flattened. The globe (or part of it) is projected onto this intermediate
surface, developable surface, after which it is flattened to a plane to produce a map. The
most commonly used developable surfaces are the cylinder, the cone, the plane and the
sinusoidal.

2 Gaussian processes

2.1 Definition and basic properties
Consider a collection of random variables {f(s) : s ∈ D} for some region D. We will
typically assume that D ⊂ <2 so that s is a 2 × 1 vector of spatial coordinates. How-
ever, any other dimension is equally possible. We can model f(s) as a stochastic process
indexed by s. Moreover, since we are interested in modelling spatial phenomena the vari-
ables f(s) should be pairwise dependent with strength of dependence that is specified by
their location. See Figure 1. We will be using Gaussian processes which can be defined as
follows (e.g. Rasmussen and Williams, 2006; Banerjee et al., 2015; Abrahamsen, 1997):

1for a very short introduction see e.g. https://en.wikipedia.org/wiki/Theorema_Egregium
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A Gaussian process is a collection of random variables, any finite number of which have
a joint Gaussian distribution.

Hence, if f(s) follows a Gaussian process, any collection of random variables f =
[f1, ..., fn]T = [f(s1), ..., f(sn)]T at a set of n locations, S = {s1, ..., sn}, has a multi-
variate Gaussian distribution

f ∼ N(µ,Kf,f) (1)

where µ is the n × 1 mean vector and Kf,f is the n × n covariance matrix. We may
call a Gaussian process, f(s) interchangeably also a latent function or Gaussian random
field and a set of function values, f , Gaussian random variables or latent variables. The
rationale for this nomenclature will become clear in section 4 when we build hierarchical
models. In these notes I will concentrate on practical implementation of spatial models
with Gaussian processes. A more thorough review of the theoretical background for
Gaussian processes is provided by Abrahamsen (1997) and more thorough treatments
by, for example, Cressie (1993), Møller and Waagepetersen (2003), Diggle and Ribeiro
(2007), Finkenstädt et al. (2007), Gelfand et al. (2010) and Banerjee et al. (2015).

The mean vector is formed by a mean function µ(s) which defines the expected value
of a random variable f(s) at any location s. For notational simplicity here I will assume
µ(s) ≡ 0 if not otherwise stated. The covariance matrix is constructed from a covariance
function, [Kf,f ]i,j = k(si, sj |θ), which characterizes the covariances between process
realizations at different locations, Cov (f(si), f(sj)) = k(si, sj |θ). The parameter vec-
tor θ collects all the parameters of the covariance function. Covariance function encodes
prior assumptions of the latent function, such as the smoothness and scale of the varia-
tion, and can be chosen freely as long as the covariance matrices produced are symmetric
and positive semi-definite, satisfying

vT Kf,f v ≥ 0,∀v ∈ <n. (2)

An example of a covariance function is the exponential

kexp(si, sj |θ) = σ2
expe

−‖si− sj‖/l, (3)

where ‖si− sj‖ is the euclidean distance (the L2 norm) between locations si and sj , σ2
exp

is the process variance, and l is the length-scale, which governs how fast the correlation
decreases as a function of distance. Covariance functions are discussed more in section 3
and, for example, in (Diggle and Ribeiro, 2007; Finkenstädt et al., 2007; Rasmussen and
Williams, 2006; Cressie, 1993).

Imagine, that we have made observations of a realization of a Gaussian process f at a
set of locations S and we want to use this information to update our knowledge concern-
ing the values of the Gaussian process at some other locations S̃ = {s̃1, ..., s̃ñ}, s̃i ∈ D.
This is a classical problem which is called Kriging in tradiotional geostatistics. However
we will use the Bayesian terminology and call this prediction. Notice, prediction is here
a statistical term and refers to a probabilistic statement on variables at a (space-time) lo-
cation from where we do not have observations. Hence, prediction does not necessarily
refer to statements about future as in some other fields of science. Forecasting is used if
we want to explicitly state that prediction concerns future variables. Other way of stating
the problem is that we have a latent function f(s) for which we have given a Gaussian
process prior. We have made observations of the function in finite number of locations
and want to predict its value at other locations s̃.
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Figure 1: An illustration of a Gaussian process. The upper left figure presents
three functions drawn randomly from a zero mean Gaussian process with squared
exponential covariance function. The hyperparameters are l = 1 and σ2 = 1
and the grey shading represents central 95% probability interval. The upper right
subfigure shows the marginal distribution for a single function value. The lower
subfigures present three marginal distributions between function values at two dis-
tinct input locations shown in the upper left subfigure by dashed line. It can be
seen that the correlation between function values f(si) and f(sj) is the greater the
closer si and sj are to each others.

By definition of a Gaussian process, the marginal distribution of any subset of latent
variables, the function values at fixed input locations, can be constructed by simply taking
the appropriate submatrix of the covariance and subvector of the mean. (See also exer-
cises.) Hence, the joint prior for latent variables at observation S and prediction locations
S̃ is [

f

f̃

]
|S, S̃, θ ∼ N

(
0,

[
Kf,f Kf ,̃f

Kf̃,f Kf̃ ,̃f

])
, (4)

where Kf,f = k(S,S|θ), Kf ,̃f = KT
f̃,f

= k(S, S̃|θ) and Kf̃ ,̃f = k(S̃, S̃|θ). Here, the

covariance function k(·, ·) denotes also vector and matrix valued functions k(s,S) : <d×
<d×n → <1×n, and k(S,S) : <d×n × <d×n → <n×n. The marginal distribution of f̃ is
p(f̃ |S̃, θ) = N(f̃ |0,Kf̃ ,̃f) like the marginal distribution of f given in (1). This marginal is
also called a prior predictive distribution since it is not conditioned to any observations.
The conditional distribution of a set of latent variables given other set of latent variables
is Gaussian as well. For example, the distribution of f̃ given f is

f̃ | f ,X, X̃, θ ∼ N(Kf̃,f K-1
f,f f ,Kf̃ ,̃f −Kf̃,f K-1

f,f Kf ,̃f), (5)

which is called the (conditional) posterior predictive distribution for f̃ after observing the
function values at locations S. Notice that the mean and covariance of the conditional
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Figure 2: A conditional (posterior) Gaussian process p(f̃ | f , θ). The observations
f = [f(0.7) = 1, f(1.3) = −1, f(2.4) = 0, f(3.9) = 2]T are plotted with circles
in the upper left subfigure and the prior GP is illustrated in the Figure 1. When
comparing the subfigures to the equivalent ones in Figure 1 we can see distinction
between the marginal and the conditional GP. Here, all the function samples travel
through the observations, the mean is no longer zero and the covariance is non-
stationary.

(posterior predictive) distribution are functions of input vector s̃ (through dependency in
Kf̃ ,̃f , Kf̃,f ) and the observation locations, S as well as the observed function values are
fixed. Hence, the distribution (5) generalizes to any number of prediction locations and
defines a Gaussian process with mean and covariance functions

mp(s̃) = k(s̃,S) K-1
f,f f (6)

kp(s̃, s̃′) = k(s̃, s̃′)− k(s̃,S) K-1
f,f k(S, s̃′). (7)

This can be called also the (conditional) posterior distribution of the latent function f(x̃).
We call the Gaussian process defined by (6) and (7) conditional posterior distribution
since it is conditioned to the values of parameters θ which we will later infer along the
latent variables. The conditional posterior GP is illustrated in Figure 2.

2.2 Observations with Gaussian noise
Typically we do not have direct observations from the Gaussian process but we use it to
model the latent variables (process level) in a hierarchical Bayesian model. Possibly the
simplest example is a model with additive Gaussian noise

y(s) = f(s) + ε(s), (8)
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where f(s) is a Gaussian process with covariance function k(s, s′) and ε(s) follows a
zero mean Gaussian distribution with variance σ2

ε independently at each location s. Since
the sum of two Gaussian variables is also Gaussian, y(s) follows a Gaussian process with
covariance function k(s, s′) + δs(s

′)σ2
ε , where δs(s′) = 1 if s = s′ and zero otherwise.

Consider that we make now observations y = [y1, ..., yn]T at locations S. In this case the
(conditional) posterior predictive mean and variance of the Gaussian process are

mp(s̃) = k(s̃,S)(Kf,f +σ2
ε I)−1 y (9)

kp(s̃, s̃′) = k(s̃, s̃′)− k(s̃,S)(Kf,f +σ2
ε I)−1k(S, s̃′). (10)

To derive this result a bit more formally let’s define the inference and prediction
problem as follows. Consider we have a zero mean Gaussian process f(s) : D → <
where D is the index domain (e.g., a subset of <2). Consider further that we have an
observation process p(y(si)| f(s)) = p(y(si)| f(si)) where we assume that each ob-
servation is conditionally independent of the other observations given the process re-
alization at that location. Now, consider we have made n observations at locations
S = {s1, ..., sn} and denote by y = [y(si), ..., y(sn)]T the vector of these observations
and by f = [f(s1), ..., f(sn)]T the respective latent variables. Due to the marginaliza-
tion properties of the Gaussian process the prior distribution of the latent variables is
p(f) = N(0,Kf,f). Hence, we can first solve the posterior distribution for the latent
variables at the observation locations

p(f |y) =
p(y | f)p(f)

p(y)
=
N(f |0,Kf,f)

∏n
i=1 p(yi|fi)

p(y)
. (11)

For example, in the case of a Gaussian observation model p(yi|fi) = N(yi|fi, σ2
ε ) the

posterior distribution of f is (see exercises)

p(f |y) ∝ N(f |0,Kf,f)
n∏
i=1

N(yi|fi, σ2
ε ) (12)

= N
(
f |Kf,f(Kf,f +σ2

ε I)−1 y, (K-1
f,f +σ−2

ε I)−1
)
. (13)

Next, we solve the posterior predictive distribution of the latent function f(s̃) at a
set of new locations s̃1, . . . , s̃m ∈ D. To do this we utilize the marginalization property
of the Gaussian process for a second time to derive the joint distribution of [fT, f̃ ]T,
where f̃ = [f(s̃1), . . . , f(s̃m)]T. This is given by equation (4). After this we use the
result concerning the conditional distribution f̃ | f in equation (5) and marginalize over
the posterior of f to obtain the posterior predictive distribution for f̃

p(f̃ |y) =

∫
p(f̃ | f)p(f |y)d f (14)

=

∫
N(f̃ |Kf̃,f K-1

f,f f ,Kf̃ ,̃f −Kf̃,f K-1
f,f Kf ,̃f)

N
(
f |Kf,f(Kf,f +σ2

ε I
−1) y, (K-1

f,f +σ−2
ε I)−1

)
d f (15)

= N(f̃ |Kf̃,f(Kf,f +σ2I)−1 y,Kf̃ ,̃f −Kf̃,f(Kf,f +σ2I)−1 Kf ,̃f) (16)

Since this is valid for any set of s̃1, . . . , s̃m ∈ D and anym > 0 the posterior for f(s) is a
Gaussian process with mean and covariance functions as in equations (9)-(10). However,

jarno.vanhatalo@helsinki.fi 6 http://www.helsinki.fi/∼jpvanhat/



Spatial modelling and Bayesian inference
Jarno Vanhatalo, University of Helsinki Lecture notes

in general, if the observation model is not Gaussian, the posterior distribution of f(s) is
not a Gaussian process. This will be discussed more in Section 4.

In order to calculate the posterior predictive distribution for a new observation, ỹ =
y(s̃) we can utilize the assumption of conditional independence between y(s) given f(s)
to obtain

p(y(s̃)|y) =

∫
p(ỹ|f(s̃))p(f(s̃)|y)df(s̃). (17)

This can be extended also to a set of new observations ỹ = [y(s̃1), . . . , y(s̃m)]T. In the
case of Gaussian observation model and set this will be

ỹ|y ∼ N(Kf̃,f(Kf,f +σ2I)−1 y, σ2I + Kf̃ ,̃f −Kf̃,f(Kf,f +σ2I)−1 Kf ,̃f) (18)

which differs from the posterior predictive distribution for f̃ only in the covariance which
has now the contribution of the noise variance σ2 in it.

2.3 Linear transformations of (multivariate) Gaussians and sam-
pling from a Gaussian process
Consider a multivariate Gaussian f ∼ N(0,Kf,f) and a linar transformation z = c + A f
where A is an m × n matrix and c an m × 1 vector. The vector z is then Gaussian
distributed, z ∼ N(c,A Kf,f AT). If the matrix A Kf,f A is not full rank (for example,
if m > n) then the multivariate Gaussian for z is degenerate and its density is formed
by considering a subset of rank(A Kf,f A) coordinates of z and treating the other co-
ordinates as their transformation.

The above property allows an efficient way to simulate from a Gaussian process.
Assume we have a way to simulate i.i.d. Gaussian random variables (all computing
programs have Gaussian random number generator). We can simulate from a Gaus-
sian process with mean function µ(s) and covariance function k(s, s′) at locations S =
[s1, ..., sn]T as follows. Construt a vector µ = [µ(s1), ..., µ(sn)]T and a covariance ma-
trix [Kf,f ]i,j = k(si, sj). Form a Cholesky decomposition of the covariance matrix LLT.
Form an n × 1 vector of i.i.d. zero mean and unit variance Gaussian random variables,
z ∼ N(0, I). After this form a vector f = µ + Lz. The vector f is then a sample from
the Gaussian process at locations S. By repeating this procedure you can construct mut-
liple realizations from the same process. (See also exercises). Note! In some cases the
constructed covariance matrix Kf,f may be numerically unstable so that the Cholesky de-
composition does not remain positive definite. In this case adding small constant (“jitter”;
typically < 10−6 is enough) to the diagonal helps.

3 On construction of Gaussian processes and their
covariance functions
In order to build Gaussian process models we need tools to build valid mean and covari-
ance functions. The covariance function has to satisfy the positive semi-definite condition
(2). Hence, for any finite set of locations s1, . . . , sn the covariance function has to pro-
duce a covariance matrix K such that if f ∼ N(0,K) the variance of vT f is valid for
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any v; that is V ar(v f) = vTKv ≥ 0. If the equality applies only when all vi are 0, the
matrix is called positive definite. Hence, any function that produces positive semi-definite
covariance matrices is valid for constructing Gaussian process. Then a practical problem
remains how to construct such functions. After constructing a positive definite covari-
ance function, another practical question is what are the properties of a Gaussian process
encoded by a specific covariance function. These questions have motivated a waste lit-
erature in statistics and mathematics (see e.g. Rasmussen and Williams, 2006; Banerjee
et al., 2015; Gelfand et al., 2010; Cressie, 1993, and references therein) and here we will
review few common classes of covariance functions and their properties. We will also
discuss how certain common models can be extended to Gaussian processes formalism.

Notice that the definition for valid covariance functions varies in literature. Often in
statistics valid covariance function is required to produce positive definite covariance ma-
trices (e.g., Banerjee et al., 2015) whereas some authors extend the definition to positive
semidefinite functions (Rasmussen and Williams, 2006). The theoretical difference is
whether processes induced by covariance functions that produce degenarate multivariate
Gaussian distributions (see section 2.3) for some combinations of indeces are considered
as valid Gaussian processes. The practical difference is that covariance functions that pro-
duce positive semidefinite covariance matrices are numerically more challenging to use.
This is typically not a problem if positive semidefine covariance functions are combined
with positive definite covariance functions as in section 3.4.

3.1 Covariance function terminology and basic results
A covariance function is called stationary if it is a function of h = s− s′ only2. Hence,
it is invariant to translations in the index domain. If the covariance function is a function
of distance only ‖s− s′‖ = ‖h‖ it is called isotropic. For example, an exponential
covariance function (3) is stationary and isotropic. However, if we modify the calculation
of the distance in the input domain D and define an exponential covariance function with
dimension scaling

kexp(si, sj |θ) = σ2
expe

(−ΣD
d=1(si,d−sj,d)2/l2)

1/2

, (19)

the resulting covariance remains stationary but is not isotropic if D > 1. In higher
dimensional index space different length-scales, ld, per input dimension allows for differ-
ent smoothness per dimension. Moreover, this example illustrates also that a covariance
function that is isotropic in dimension D need not be isotropic in D′ > D.

In case of stationary covariance functions we can calculate a semivariogram, γy(h) =
ky(0) − ky(h), and a variogram, 2γy(h), functions. Here, the subindex y denotes that
the variogram is calculated for the observations; that is the covariance functions are the
covariance functions of y(s) in (8). These terms arise from traditional geostatistics where
variograms and semivariograms were empirically estimated from data. After this the
covariance function parameters were chosen so that the semivariogram of a chosen co-
variance function matched the empirical semivariogram points, for example, in root mean
square sense (Gelfand et al., 2010; Banerjee et al., 2015). In this course we will not use
variograms but the term is good to know since it is still used extensively in some fields of

2Note that this means weak stationarity for the corresponding stochastic process whereas strong stationarity
would mean that all of its finite dimensional distributions are invariant to translations.
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geosciences. In case of stationary covariance function the semivariogram might depend
on the direction with respect to which it is calculated, whereas with isotropic covarance
functions the variograms do not depend on the direction. There are three chraracteristics
that are traditionally associated with variograms, the nugget, the sill and the range. By
definition the nugget is lim‖h‖→0+ γy(h). The sill is defined to be lim‖h‖→∞ γy(h). The
range is the distance at which γy(h) reaches its sill. For example, consider the Gaussian
observation model (8) where the Gaussian process has an exponential covariance function
(3). The nugget of the variogram of y(s) would be σ2

ε and the sill would be σ2
exp + σ2

ε .
However, the sill is reached only asymptotically for which reason the range does not exist.

In model based spatial statistics, which is considered in this course, range is typically
defined to be the distance at which the covariance has dropped to 5% of its maximum.
(See also exercises.) However, this might vary in the literature for which reason care need
to be taken when interpreting the term.

In general if we have two valid covariance functions k1(s, s′) and k2(s, s′), then the
functions ak1(s, s′) + bk2(s, s′), ck1(s, s′)k2(s, s′) and their combinations are valid co-
variance functions for all a, b, c > 0 (see exercises). Similarly, if k1(s, s′) = k1(s1, s

′
1)

is a function of only the first element of s and k2(s, s′) = k2(s2, s
′
2) is a function of

the second element of s then any multiplicative or additive combination of k1(s, s′) and
k2(s, s′) is a valid covariance function. This extents to any combination of elements in s
(however, see also discussion in section 3.4). For example, if f(s, t) : <2 × < → < is a
Gaussian process in space, s, and time, t, one common approach to define a covariance
function for this process is to use a separable form k ((s, t), (s′, t′)) = k1(s, s′)k2(t, t),
where k1(·, ·) and k2(·, ·) are some radial basis functions. Convolution is yet another way
to construct new covariance functions. If k1(h) and k2(h) are valid covariance functions
then k(h) =

∫
k1(h− t)k2(t)dt is a valid covariance function as well.

3.2 Stationary covariance functions and Bochner’s Theorem
One very influential result for Gaussian process theory is the Bochner’s Theorem (Baner-
jee et al., 2015) which provides a tool to construct stationary positive definite covari-
ance functions in an arbitrary r-dimensional Euclidean space. For real-valued processes,
Bochner’s Theorem states that k(h), where h = s− s′, is positive definite if and only if

k(h) =

∫
cos
(
wTh

)
G(dw), (20)

where G(dw) is a bounded, positive, symmetric about 0 measure in <r. Since G(dw) is
assumed symmetric and eiw

Th = cos(wTh) + i sin(wTh) we have

k(h) =

∫
eiw

ThG(dw). (21)

If G(dw) is not assumed symmetric about 0, equation (21) still provides a valid co-
variance function but now for a complex-valued random process on <r (Banerjee et al.,
2015).

Hence, G(dw)/k(0) = G(dw)/
∫
G(dw) is referred as the spectral distribution of

k(h). Typically G(dw) is constructed so that it has a density with respect to Lebesgue
measure and G(dw) = g(w)dw. Then, g(h)/k(0) is referred to spectral density of a
covariance function k(h). For example, the Matérn class of covariance functions which
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are widely used in spatial statistics are constructed using Cauchy spectral density. See,
e.g., (Rasmussen and Williams, 2006, pp. 84-85) and (Banerjee et al., 2015, p. 62).
A more thorough discussion on Bochner’s Theorem is provided by, e.g. Banerjee et al.
(2015).

Here it should be noticed also that Bochner’s Theorem is valid in Euclidean space
and we cannot straighforwardly apply covariance functions constructed or validated by
Bochner’s Theorem in other spaces. Hence, if we want to define a valid covariance func-
tion on, for example, the surface of a globe we need different tools for that. Further
discussion on such covariance functions are provided, for example, by Banerjee et al.
(2015), Lindgren et al. (2011) and Banerjee (2005).

3.3 Gaussian process interpretation for linear model
Consider the model f(x) = xT β where x is a p × 1 vector of covariates and β ∼
N(0,Σβ). For any collection of covariate vectors X = [xT

1 , . . . ,x
T
n ]T the joint distribu-

tion of f = [f(x1), . . . , f(xn)]T is a multivariate Gaussian f ∼ N(0,XΣβX
T) (section

2.3). Hence, a linear model can be seen as a Gaussian process with covariance function
k(x,x′) = xT Σβ x′ (a more detailed treatment is given by Rasmussen and Williams
(2006)).

3.4 Additive and hierarchical Gaussian processes
In section 2.2 we considered an additive Gaussian observation error. More generally, let
f(s) = h(s) + g(s), where h(s) : D → < and g(s) : D → < are mutually inde-
pendent zero mean Gaussian processes with covariance functions kh(s, s′) and kg(s, s′).
Then, f(s) : D → < follows a Gaussian process with covariance function kh(s, s′) +
kg(s, s

′). To show this, consider any set of input indices s1, . . . , sn ∈ D. Then, h =
[h(s1), . . . , h(sn)]T ∼ N(0,Kh,h) and g = [g(s1), . . . , g(sn)]T ∼ N(0,Kg,g) where
[Kh,h]i,j = kh(si, sj) and [Kg,g]i,j = kg(si, sj). Now, define f = [f(s1), . . . , f(sn)]T =
h + g. Due to properties of a multivariate Gaussian distribution, f ∼ N(0,Kf,f) where
[Kf,f ]i,j = [Kh,h + Kg,g]i,j = kh(si, sj) + kg(si, sj). Hence, for any collection of in-
put indices the values of the function f(s) are multivariate Gaussian with a covariance
function kh(s, s′) + kg(s, s

′) and by definition it is then a Gaussian process.
Consider now that we have made observations of f(s) at locations s1, . . . , sn ∈ D but

we are interested in the posterior distribution of h(s). We can then consider the process
g(s) as a correlated noise process and proceed as in section 2.2 to solve the conditional
posterior of h(s) which is a Gaussian process with mean and covariance functions

mh| f (s̃) = kh(s̃,S)(Kg,g + Kh,h)−1 f (22)

kh| f (s̃, s̃
′) = kh(s̃, s̃′)− kh(s̃,S)(Kg,g + Kh,h)−1kh(S, s̃′), (23)

where [Kg,g]i,j = kg(si, sj) and [Kh,h]i,j = kh(si, sj). Naturally, this extends also to
the case of noisy observations (section 2.2). During lectures we go through another way
to derive this result.

Let’s next look at the linear Gaussian model in section 3.3 in a bit more detail. Lets
rewrite the linear model as f(z) = zT η where z is a vector of covariates so that z =
[1, x1, . . . , xp]

T and η = [α, β1, . . . , βp]
T. Let’s further define the prior η ∼ N(0,Ση)
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where

Ση =

[
σ2
α 0
0 Σβ

]
(24)

Now, we can write

f(z) = zT η (25)

= α+ xT β = f(x), (26)

where α is an intercept with prior distribution α ∼ N(0, σ2
α) and β is the vector of

linear weights as in section 3.3 with the prior β ∼ N(0,Σβ). There are now few
ways to interpret this model. One is the Gaussian process interpretation so that f(z) ∼
GP (0, k(z, z′)) where k(z, z′) = σ2

α + xT Σβ x′ = kα(z, z′) + kx(z, z′). And hence,
for any set of covariates x1, . . . ,xn the latent vector f has a multivariate Gaussian dis-
tribution f ∼ N(0,Kα + Kx) where Kα = σ2

α11T, and 1 is an n × 1 vector of ones.
Hence, the model is a Gaussian process with an additive covariance function. However,
all of the additive covariance functions are positive semi-definite only and, hence the re-
sulting covariance function k(z, z′) is positive semi-definite as well. This is natural since
α is a random variable with Gaussian distribution and has the same value at every x and
the distribution for function xT β is uniquely defined by the p-dimensional Gaussian dis-
tribution for β. Hence, treating linear model as a Gaussian process might not seem so
tempting compared to traditional treatment of linear models since now we have posed a
problem with p+ 1 variables in n-dimensional space. However, this interpretation gives
some benefits when we add spatial random effects to the model (see below) and allows
alternative way to derive the posterior distribution for linear weights compared to the tra-
ditional treatment (see exercises). In the fomer case, the resulting additive model has a
positive definite covariance matrix and we have effectively marginalized over the linear
weights which gives computational benefits.

Another way to define the model (26) is through a hierarchical construction

f(x) ∼ GP
(
µ, k(x,x′)

)
µ ∼ N(0, σ2

α),

where σ2
α is the prior variance of the mean of a Gaussian process. Hence, by a coice of

covariance function we can actually implicitly model some hierarchical latent Gaussian
models (see Rasmussen and Williams, 2006, for more discussion on mean functions in
GPs).

Next we will consider Gaussian processes in the setting of traditional random effects
models (?) which are common in many practical applications. Consider a setup where
n experiments are conducted at m different experimental plots as illustrated in Figure
3. This could be, for example, aggricultural experiment where each plot, z, corresponds
to one field which is divided into experimental units within it. The experimental setup
is encoded by covariates x telling, for example, how much fertilization is used in the
experiment. The plots are typically not identical but, for example, the soil composition,
depth of the fertile soil etc. may vary. Hence, we are anticipating that, in addition to
a covariate effect, there is a plot level effect to the outcome of an experiment yi, i =
1, . . . , n. Moreover, since each plot and each experiment within a plot is at different
spatial location we might anticipate that there is also spatially correlated randomness in
the outcomes of the experiments due to, for example, varying weather conditions during
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the experiments. A typical way to analyze this kind of data is to construct a hierarchical
additive model

y(xi, zi, si) = xT
i β + εzi + φ(si) + εi (27)

where the effect of experimental treatments are assumed linear with weights β ∼ N(0,Σβ),
εzi ∼ N(0, σ2

z) is a random effect capturing the plot level effect, φ(si) ∼ GP (0, k(s, s′))
is a spatial random effect (a Gaussian process) and εi is an i.i.d. random error per mea-
surement. It is also assumed that the prior distributions for the additive terms are mutually
independent.

Let’s assume si ⊂ <2, xi ∈ <p and zi ∈ N is the identifier of plot i. We can then
formulate the hierarchical additive model (27) as y(xi, zi, si) = f(xi, zi, si) + εi where
f(x, z, s) is a Gaussian process in a domain <2 × <p × N with an additive covariance
function of the form (see section 3.4.1)

k
(
(s,x, z), (s′,x′, z′)

)
= ks(s, s

′) + k(x,x′) + σ2
zδz(z

′), (28)

The covariance function ks(s, s′) could be any radial basis covariance function suitable
for modeling spatial dependence and k(x,x′) would be the covariance function corre-
sponding to the linear model and δz(z′) is a delta function returning 1 if z = z′ and zero
otherwise. Let’s now order the data so that we stack together the observations in ascend-
ing order of plot indicator; that is, first the observations from plot 1, then from plot 2 and
so on all the way to plot m. Then the prior for the latent vector f would be a zero mean
multivariate Gaussian with a covariance matrix

Kf,f =
[
Ks

]
+
[
XΣβX

T
]

+


[
σ2
zJm1

] [
σ2
zJm2

]
. . . [

σ2
zJmn

]
 (29)

where Jm1 is a matrix of size m1 ×m1 with one in every element and mi is the number
of measurements in the zi’th plot. The matrices Ks and XΣβX

T are full n× n matrices
whereas the rightmost matrix corresponding to covariance function σ2

zδz(z
′) is a block

diagonal matrix. Hence, the plot structure in the data transfers naturally to structured
covariance matrix in the prior of the latent variables. Another way to derive the covariance
function σ2

zδz(z
′) would be to define a piece wise constant mean function with Gaussian

priors for these constants.
The model structure (27) is present in many other settings as well. Some examples

include species distribution modeling (?), genetics (?), ... However, depending on the
application the random effect might be indexed in some other domain than space.

3.4.1 Proof of equation (28)

Consider a function f(x, z, s) = xT β + εz + φ(s) with prior distributions as in the
model (27). Since each of the additive terms in f(x, z, s) is Gaussian for any collection
of {x1, z1, s1}, . . . , {xn, zn, sn} it follows that f = [f(x1, z1, s1), . . . , f(xn, zn, sn)]T

has a multivariate Gaussian distribution for any collection of input indeces and is a Gaus-
sian process by definition. Hence, it remains to be shown that the covariance function
of f(x, z, s) is (28). Let’s solve this by direct calculation. Take any two index sets
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Figure 3: An illustration of an experimental setup where the spatial domain, D is
divided into n experimental plots denoted by zi = 1, . . . , n and at each plot we
have measurements, yi, (dots) with different experimental treatments, xi.

{xi, zi, si} and {xj , zj , sj}. Then the covariance between fi = f(xi, zi, si) andfj =
f(xj , zj , sj) is

Cov(f(xi, zi, si), f(xj , zj , sj) = E [(fi − E[fi]) (fj − E[fj ])]

= E [fifj ]

= E
[(

xT
i β + εzi + φ(si)

)(
xT
j β + εzj + φ(sj)

)]
= E

[
(xT
i β)(xT

j β) + εziεzj + φ(si)φ(sj) + . . .
]

= k(xi,xj) + σ2
zδzi(zj) + ks(si, sj) (30)

where the remainder terms on line four are pairwise multiplications of additive elements
whose expectations are zero due to the assumed prior independence.

3.5 Spatial misalignment (change of support)

4 Hierarchical spatial models
This far we have considered inference with Gaussian processes when the parameters of
the covariance function and obervation model (likelihood function) are fixed. Now we
will extend the inference to these hyperparameters as well. We start with a general model
definition

[Data | process, parameters] y ∼ p(y |f(·), γ) (31)

[process | parameters] f(·)|θ ∼ GP (m(·|θ), k(·, ·|θ)) (32)

[parameters]: θ, γ ∼ p(θ, γ) (33)
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where we have three hierarchical layers. The first layer is the observation process which
tells the conditional distribution of observations y = [y1, ..., yn]T given the latent process
and observation model parameters, γ. The second layer specifies the prior for the latent
process conditionally to the paremeters of the covariance and mean functions, θ, and the
third layer specifies the prior for the hyperparameters. We have not specified the index
space for the latent proces here since it can vary depending on the application. It should
also be noticed that this definition does not make any assuptions of a priori conditional
independence among the observations and that this formulation allows observations yi to
depend on the latent function very generally, for example, at one specific location or over
an entire input domain.

Next we will consider few examples of this general construction and discuss the hy-
perpriors for covariance function parameters. In section 6 we will consider the inference
problem from practical computational point of view.

4.1 Hierarchical model with Gaussian observation error
Let’s generalize the model with conditionally independent Gaussian observations and a
Gaussian process prior in Section 2.2 to include prior distributions for its hyperparame-
ters. Let’s assume a zero mean stationary radial basis covariance function (for example
the exponential or squared exponential) and that the model parameters are independent a
priori so that

y | f , σε ∼
n∏
i=1

N(yi|f(si), σ
2
ε ) (34)

f(s)|l, σ ∼ GP
(
0, k(s, s′ |l, σ2)

)
(35)

l, σ2, σ2
ε ∼ p(l)p(σ2)p(σ2

ε ) (36)

The observation model parameter is γ = σ2
ε and the process model parameters are θ =

[l, σ2, ]. This far we have considered conditional posterior inference for the latent func-
tion p

(
f(s̃)|y, l, σ2, σ2

ε

)
, equations (9)-(10), and new observations p

(
y(s̃)|y, l, σ2, σ2

ε

)
,

equations (17)-(18).
Now we want to solve the posterior distribution also for the hyperparameters

p(l, σ2, σ2
ε |y) =

1

Z
p(y |l, σ2, σ2

ε )p(l)p(σ
2)p(σ2

ε ) (37)

whereZ =
∫
p(y |l, σ2, σ2

ε )p(l)p(σ
2)p(σ2

ε )dldσ
2dσ2

ε is the normalizing constant. Notice
that here the normalizing constant is different from the normalizing constant in equation
(11) even though both denote the prior predictive distribution of the data; that is Z =
p(y). The reason is that here the model is different from the model in section 2.2 since
we have included the prior for the hyperparameters to it. Hence, in this hierarchical model
the normalization constant of (11) corresponds to a marginal likelihood

p(y |l, σ2, σ2
ε ) =

∫
p(y | f , σ2

ε )p(f |l, σ2)d f (38)

= N(y |0,Kf,f +σ2I). (39)

Plugging the marginal likelihood into equation (37) we get

p(l, σ2, σ2
ε |y) ∝ N(y |0,Kf,f +σ2I)p(l)p(σ2)p(σ2

ε ). (40)
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After solving the posterior distribution for the hyperparameters we can marginalize over
them to calculate the marginal predictive distributions such as

p(f(s̃)|y) =

∫
p(f(s̃)|y, l, σ2, σ2

ε )p(l, σ
2, σ2

ε |y)dldσ2dσ2
ε (41)

However, the practical problem is that the equations (40) and (41) cannot be solved
analytically. For this reason we need to rely on approximative methods such as Markov
chain Monte Carlo (Gilks et al., 1996; Robert and Casella, 2004; Gelman et al., 2013).
In this course we will not treat the theory behind Markov chains but we will concentrate
on how MCMC methods can be used in Bayesian inference in practice. We will employ
the STAN software package3. Useful references to MCMC are STAN documentation and
the book by (Gelman et al., 2013). See also lecture slides and section 6.2.1 for more
information on MCMC.

MCMC methods provide means to marginalize over the hyperparameters. Another
option is to conduct so called empirical Bayes inference where the hyperparameters are
optimized to their maximum a posteriori estimate

θ̂, γ̂ = arg max
θ,γ

p(y |θ, γ)p(θ, γ). (42)

The MAP estimates for the hyperparameters can then be used as plug-in-values and the
posterior inference concerning the latent function condudted as in section 2. The resulting
predictive distributions can then be called conditional posterior distribution.

4.2 Examples of hierarchical models with non-Gaussian obser-
vation models
In this course we will consider hierarchical models with a Binomial/Bernoulli and Poisson
observation model. The former can be written as

y | f ,N ∼
n∏
i=1

Bin(yi|π(f(si)), Ni) (43)

f(s)|l, σ ∼ GP
(
0, k(s, s′ |l, σ2)

)
(44)

l, σ2 ∼ p(l)p(σ2) (45)

where π(fi) is typically either the logistic π(fi) = 1/(1 + e−fi) or the probit, π(fi) =
Φ(fi), link function and Ni is the sample size at location si. There are several example
applications for this model and, for example, Rasmussen and Williams (2006) discus a
general classification setup, where Ni = 1 for all i. An hierarchical spatial model with
Poisson observation process can be defined analygously with

y | f ,N ∼
n∏
i=1

Poisson
(
yi|ef(si)

)
(46)

where ef(s) is the intensity of the process at location s (other link functions than expo-
nential are sometimes used as well).

There are many practical examples that lead to these two models. Here, I will derive
these models from species distribution modeling (Gelfand et al., 2006) and point process
modeling perspective.

3http://mc-stan.org/documentation/
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4.2.1 Example application: species distribution modeling

Species distribution models are a key part in ecologists’ toolbox. They are increasingly
used, for example, to improve our understanding of species habitat preferences (Latimer
et al., 2006; Austin, 2007) and species interactions (Ovaskainen et al., 2017), to iden-
tify and manage conservation areas (Johnston et al., 2015) and to predict the response
of species to climate change (Clark et al., 2014). One typical objective is to use species
occurrence or abundance observations, and the associated environment, to build informa-
tion on the relationship between these two attributes (Gelfand et al., 2006; Latimer et al.,
2006). When information on environmental characteristics is available from unsampled
locations, it may then be used to predict the abundance of a species over a region of study
to build thematic species distribution maps (Elith and Leathwick, 2009; Gelfand et al.,
2006; Vanhatalo et al., 2017; Kallasvuo et al., 2017).

Consider now, that π̃(s) denotes the probability that a species is present at location
s (see also section 5). Let us then denote the probability of observing the species, if it
is present, by π̃0(s), which makes it evident that in general the observation probability
may depend on the location. Hence, if we assume that the probability of presence and
the probability of observing the species given it is present are a priori independent, the
probability for presence observation at location s is π(s) = π̃(s)π̃0(s). If each location is
visited only once, the data does not contain information on both the observation probabil-
ity and the probability of presence. In this situation, a simplifying assumption is typically
made and the occurrence probability is assumed constant, π̃0(s) ≡ C. The inference is
then conducted only for the probability of presence observation, π(s) ∝ π̃(s) with inter-
pretation that it describes the relative probability of presence at location s. A common
approach to model the probability of presence observation would be to assume that its
log odds-ratio follows, for example, linear model with spatially correlated discrepancies
so that

log
π(s)

1− π(s)
= x(s)β + φ(s) (47)

where x(s) are the environmental covariates at location s and φ(s) is a spatial random
effect modeled by Gaussian process. Naturally, we could use any other functional forms
in place of the linear model. Note also that the log-odds is equivalent to logistic trans-
formation desccribed above. Hence, the log-odds of the relative probability of presence
observation is a Gaussian process with mean function x(s)β and covariance function
k(s, s′) = Cov(φ(s), φ(s′)). If the weights β are given a Gaussian prior the model re-
duces to the hierarchical model described by (43) - (45) with Ni = 1.

Next we consider a model for count data. This can result from data collection where
each site is visited several times. If the species observation probability is one the observa-
tion model would reduce to the presence absence model. If the observation probability is
considered to be less than one, we can infer also the observation probability. The result-
ing likelihood function is derived in the exercises. Another typical observation model for
count data is the Poisson distribution. Assume a situation where each sample location is
not strictly a point but we have counts of species on some finite but ”small” area/volume
in the study domain. For example, in (Vanhatalo et al., 2017) the observation was the
number of star fish in an area surveyd by a diver and in (Kallasvuo et al., 2017) the ob-
servations are number of fish in sampled volume of water. Small area/volume refers here
to the fact that the sampled area/volume is so small compared to the study domain that
it can practically be treated as a point (e.g., few square meters per sample compared to
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study area of few thousand kilometers in lenght); that is we assume that the probability
of species being anywhere within the small area/volume is constant. However, in this
case the sampling procedure is not repeated sampling but each sample represents one
time event where we observe number of individuals in a finite area/volume. Hence, the
obseravation process is better described by Poisson distribution. In section 5 we derive
the Poisson observation model from point processes.

4.3 Prior distributions for hyperparameters
The choice of prior distributions is a central question in Bayesian statistics in general.
Similarly, the choice of hyperpriors for the covariance function and observation model
parameters has obtained lot of interest in the statistical literature. Here, I will review few
key findings on the topic.

One very common, traditional model is a model with additive linear predictor and
Gaussian process random effect parts, f(s,x) ∼ GP (xβ, k(s, s′)). A typical choice
for the prior for the (fixed effects) vector, β, is a zero mean Gaussian distribution with
large marginal variance for each component of β and prior independence; that is βd ∼
N(0, σ2

β) where, for example, σ2
β = 10. This prior correponds to vague prior on the

effects of covariates x. As discussed in sections 3.3 and 3.4 this model can also be
written as a GP with additive covariance function in which case the hyperparameters of
the covariance function corresponding to the linear model are fixed.

The parameters of other covariance functions provide a more interesting problem for
prior definition. In statistical literature, inference in the covariance function parameters
is a natural concern but in machine learning literature they are left in less attention. An
indicator of this is the usual approach to maximize the marginal likelihood which implies
uniform prior for the hyperparameters (Rasmussen and Williams, 2006). However, from
both practical and philosophical point of view, it is typically beneficial to give priors for
the hyperparameters.

In spatial statistics literature it is well known that the length-scale and magnitude
are under identifiable and the proportion σ2/l is more important to the predictive perfor-
mance than their individual values (Diggle et al., 1998; Zhang, 2004; Diggle and Ribeiro,
2007). For example, Zhang (2004) considers Gaussian processes with Matérn covari-
ance functions with smoothness (degrees of freedom) parameter ν and no observation
error variance. Zhang (2004) shows that, under uniform prior, the ratio σ2/l2ν can be
identified but not the individual parameters. This has direct implications to the inference
concerning the hyperparameters. We cannot expect the data to be informative on both
the variance and the length-scale parameters and, hence, prior information is needed to
conduct sensible inference on both parameters. In the presence of observation error the
identifibiality of the parameters is even bigger issue.

Typically the hyperparameters are given independent priors so that, for example,
p(σ2, σ2

ε , l) = p(σ2)p(σ2
ε )p(l). The variance parameters can be given any common vari-

ance prior, such as, the Jeffrey’s log-uniform prior, p(σ2) ∝ 1/σ2 or Scaled inverse χ2

(inverse-Gamma) prior (Gelman et al., 2013). In recent years, so called weakly informa-
tive priors (Gelman, 2006) for variance parameters have obtained much attention. One
option that seems to have preferable properties is to give the variance parameters a prior
that favors small values (that is, has a peak at zero) but has also heavy tail so that the
variance parameter can increase if data is informative on it. Such priors can be con-
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structed, for example, with Student-t or Cauchy distributions (Gelman et al., 2013). The
prior can be set also to be informative on the relative importance of the different variance
components. For example, if we assume that the independent errors part should be much
smaller than the process variation we can set the scale parameter of the Student-t and
Cauchy distributions to be smaller for σ2

ε than for σ2.
Typical choices for the prior for the length-scale parameter are uniform within some

region or rather wide unimodal distributions with peak at the best a priori guess. However,
the weakly informative priors can be used also for length-scale parameters. For example,
l ∼ Student− t+(ν, µ = 0, s) defines a prior that prefers short length-scales and, hence,
short correlation ranges. By the choice of s we can control the width of the distribution
and adjust it with respect to the size of the modelled region. With ν we can control the
mass on the tail of the distribution so that with ν = 1 the distribution coincides with
Cauchy distribution and with ν → ∞ the distribution approaches Gaussian. Typically
reasonable choices are ν = 1 or ν = 4. On the other hand, if we want to favor long
correlation lengths we should give the prior for the inverse of the length-scale so that, for
example, 1/l ∼ Student − t+(ν, µ = 0, s). This latter prior is closely related to just
resently introduced penalized complexity priors (Simpson et al., 2014). In some cases
one can also define (strongly) informative priors for the covariance function parameters
that arise from the subject area knowledge (Hartmann et al., 2017).

The above discussion is rather practical. More fundamental reason for seriously think-
ing about the priors is that in Bayesian statistics leaving prior undefined (meaning uniform
prior) is a prior statement as well, and sometimes it may be really awkward. Thus, it is
better to spend some time thinking what the prior actually says. This is especially impor-
tant with additive and other models where we have many Gaussian process components.

5 Point process modeling
In this section we will turn our attention to point processes, which form one active field
of spatial statistics. The treatment will be very introductory and follows largely Baner-
jee et al. (2015). When analyzing point patterns the interest is in inferring the process
constructing patterns of ”points” in the study region. These points can be, for example,
the locations of trees or other species in a geographic region (Gelfand et al., 2006), the
locations and the spread of disease incidences (Elliot et al., 2001), locations of conflicts
in space and time (Zammit-Mangion et al., 2012) or distribution of nerve fibres on skin
(Waller et al., 2011) to name a few examples. The aims are, for example, to analyze the
reasons why the points appear where they do, detect clustering of points, and analyze
typical distances between the points. Here, we will consider modeling point processes
and those interested in the subject more thoroughly should consult (Banerjee et al., 2015;
Gelfand et al., 2010; Diggle, 2003; Møller and Waagepetersen, 2003)

5.1 Poisson point processes
As an example, let Z(s) : D → {0, 1} be the random process denoting the presence
of a species at location s. I will denote the domain of interest again by D. Let S =
{s1, . . . , sn′} be the set of locations where the species is present; that is S = {s : Z(s) =
1}. Now, unlike in earlier applications where S has been fixed set of observation locations
here it is a random variable and we need to give it a probabilistic model. First we define

jarno.vanhatalo@helsinki.fi 18 http://www.helsinki.fi/∼jpvanhat/



Spatial modelling and Bayesian inference
Jarno Vanhatalo, University of Helsinki Lecture notes

the distribution for n′ = N(D), the number of points in D. This will be a distribution
over the set n′ ∈ {0, 1, 2, ...}. After this we need to define, for any n′, a multivariate
probability density over Dn′

, which I will denote by p(s1, . . . , sn′). Since points are
unordered/unlabeled, p must be symmetric in its arguments. This implies that, with ∂ s
denoting an arbritrarily small circular neighborhood around s, the probability for a point
pattern given n′ is

P (N(∂ s1) = 1, . . . , N(∂ sn′) = 1)|N(D) = n′)

≈ p(s1, . . . , sn′ |N(D) = n′)

n′∏
i=1

|∂ si | (48)

where |∂ si | is the area of ∂ si. Hence, the (joint) probability for a point pattern S is

P (S) ≈ P (N(D) = n′)p(s1, . . . , sn′ |N(D) = n′)
n′∏
i=1

|∂ si |, (49)

Now the question remains, how to define the probability distribution P (N(D)) and the
density function p. There are several constructions for point processes and here we will
treat, perhaps, the most common ones – the Poisson process, the Cox process and the log
Gaussian Cox process.

A Poisson process over a bounded set D is defined as follows. Let B denote a subset
of D and N(B) denote the number of points in that subset. Given an intensity function
λ(s), for any B ⊂ D the number of points in that subset follows a Poisson distribution,
N(B) ∼ Poisson(λ(B)) where λ(B) =

∫
B λ(s)d s. Moreover, if B1 and B2 are dis-

joint, then N(B1) and N(B2) are independent (e.g. Cressie, 1993). Hence, the study
domain needs to be bounded since otherwise for some B the expectation of the Poisson
distribution would be infinite. The independence of disjoint sets implies that

p(s1, . . . , sn′ |N(D) = n′) =
n′∏
i=1

p(si) =
n′∏
i=1

λ(si)/λ(D) (50)

where λ(D) =
∫
D λ(s)d s. Due to properties of Poisson distribution E(N(B)) =

V ar(N(B)) = λ(B) and the marginal probability for presence observation at any lo-
cation is P (N(∂ s)) ≈ E(N(∂ s)) = λ(∂ s) ≈ λ(s)|∂ s |.

If the intensity is constant, λ(s) = λ, the Poisson process is called homogeneous
Poisson process and if the intensity varies in space the process is called nonhomogeneous
Poisson process or inhomogeneous Poisson process. If the intensity surface is assumed
to be random the resulting process is called Cox process. From the Bayesian perspective
this division is rather awkward but the reason is historical and the naming convention
arizes from non-Bayesian treatment. To formalize the convention in Bayesian terms, we
can denote the homogeneous and nonhomogeneous Poisson processes as the conditional
processes p(s1, . . . , sn′ |λ(s)) where it is made explicit that we consider a process given
we know the intensity. The Cox process is then the process induced by marginalizing
over the distribution for the intensity, p(s1, . . . , sn′) = E (p(s1, . . . , sn′ |λ(s))). The
point process we will consider in this course is the log Gaussian Cox process. It is a
process where log λ(s) follows a Gaussian process.
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5.2 Inference with Poisson point processes
Assume we have observed a point pattern S = {s1, . . . , sn′} in domain D. For now we
will assume that the domain D is fully observed. That is, the variable of interest, for
example, a species is present only in locations S and nowhere else in domain D. In the
exercises we will consider situation where the domain might not be fully observed. The
interest is in inferring the intensity of the Poisson process. Recall that N(D) is Poisson
distributed and hence

P (N(D) = n′) =
e−λ(D)λ(D)n

′

n′!
(51)

Given, N(D) = n′, the location density is given by (50) so that the joint ”density” is

p(s1, . . . , sn, N(D) = n′|λ(s)) =
e−λ(D)λ(D)n

′

n′!

n′∏
i=1

λ(si)

λ(D)
(52)

From which we can see that the likelihood is

L(s1, . . . , sn, N(D) = n′|λ(s)) ∝ e−λ(D)
n′∏
i=1

λ(si), (53)

where L(·|λ(s)) denotes the likelihood function with respect to λ(s). In log Gaussian
Cox process we give a Gaussian process prior for f(s) = log λ(s). Then (53) could be
used as a likelihood function for the latent function f(s) in which case we can extend the
model description to follow the full hierarchical model framework described by (31)-(33).
The challenge, however, is that the likelihood defined by (53) is analytically intractable
since the integral λ(D) =

∫
D λ(s)d s cannot be solved in closed form

Hence, a practical solution for inference is to partition D into dense grid and assume
we have observation from each grid cell. That is, we assume N(Bi) is the number of
points in grid cell i = 1, . . . , n where n is the total number of grid cells in D. The
assumptions behind a Poisson point process, that is the counts in disjoint cells are in-
dependent given λ(Bi), implies that the likelihood of counts over grid cells can now be
written as a product of individual Poisson terms

p(N(B1), . . . , N(Bn′)|λ(s)) =
n∏
i=1

Poisson ((N(Bi)|λ(Bi)) (54)

=
n∏
i=1

e−λ(Bi)λ(Bi)
N(Bi)

N(Bi)!
. (55)

Notice that at this point we have not done any approximation yet since this is just another
way of writing (53). The problem is just posed so that instead of λ(D) =

∫
D λ(s)d s we

need to calcuate n integrals λ(Bi) =
∫
Bi
λ(s)d s. If the grid is dense enough compared

to the ”rate of variation” of the intensity we can approximate λ(Bi) ≈ λ(si)|Bi| where si
is the centre of Bi. Typically it is assumed that the grid cells are of equal size, in which
case we can denote λ̃(si) = λ(si)|Bi| and write the model using the expected counts per
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grid cell

p(N(B1), . . . , N(Bn|λ(s)) =

n∏
i=1

Poisson ((N(Bi)|λ(si)|Bi|) (56)

=

n∏
i=1

Poisson
(

(N(Bi)|λ̃(si)
)
. (57)

Which is of the form (46) and feasible for inference with standard methods.

5.3 Generating point patterns and thinning
Consider generating a realization from a homogenous Poisson process in domain D (that
is λ(s) = λ). This can be done by first sampling n′ ∼ Poisson(λ|D|) and then, given,
n′ sampling n′ locations uniformly from D (see exercises for proof). So called thinning
method to obtain samples from nonhomogenous Poisson process is the following. Let
λmax = maxsλ(s), s ∈ D. Generate a point pattern from homogenous Poisson process
using the constant intensity λmax. For each point generated, do a rejection step so that,
for si draw Ui ∼ Unif(0, 1) and retain si if Ui < λ(si)/λmax.

The thinning method to construct samples from a nonhomogeneous Poisson process
can also be extended to build models in situations where the observation probability varies
in space. Let λ(s) be an intensity surface of a nonhomogeneous Poisson process and let
π(s) : D → [0, 1] denote a thinning surface such that a point at location s is observed
with probability π(s). Then the process generating observed points is a nonhomogeneous
Poisson process with intensity λ(s)π(s).

6 Inference and prediction with non-Gaussian like-
lihoods
Given the hierarchical model described by equations (31)-(33), our inferential interest
is in the posterior distributions of the hyperparameters and the latent function, as well
as in the predictive distribution of new observations. In an ideal situation, all the desired
distributions could be solved analytically, but unfortunately this is not possible in general.
In this section I discus few commonly used posterior approximations. I will start with
methods for calculating/approximating the conditional posterior of latent variables,

p(f |y, θ, γ) =
p(y | f , γ)p(f |θ)∫
p(y | f , γ)p(f |θ)d f

. (58)

In sections 2.2 and 4.1 we have considered the case of Gaussian observation model,
N(y | f , σ2

ε I), where the conditional posterior can be solved analytically resulting in a
multivariate Gaussian distribution. Section 6.4 treats the problem of marginalizing over
the hyperparameters to obtain the marginal posterior distribution for the latent variables

p(f |y) =

∫
p(f |y, θ, γ)p(θ, γ|y)dθdγ. (59)
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6.1 Conditional posterior of the latent function

6.2 Posterior mean and covariance
I will start by looking at the conditional posterior mean and variance of the latent function.
If the hyperparameters are considered fixed, GP’s marginalization and conditionalization
properties can be exploited in prediction. Assume that we have found the conditional
posterior distribution p(f |y, θ, γ), which, in general, is not Gaussian. We can then eval-
uate the posterior predictive mean simply by using the expression of the conditional mean
Ef̃ | f ,θ,γ [f(s̃)] = k(s̃,S) K-1

f,f f (see equation (5) and the text below it) to obtain a para-
metric posterior mean function

mp(s̃|θ, γ) =

∫
Ef̃ | f ,θ,γ [f(s̃)]p(f |y, θ, γ)d f = k(s̃,S) K-1

f,f Ef |y,θ,γ [f ]. (60)

The posterior predictive covariance between any set of latent variables, f̃ , can be evaluated
with the law of total variance (see, for example, Gelman et al., 2013)

Covf̃ |y,θ,γ [f̃ ] = Ef |y,θ,γ

[
Covf̃ | f [f̃ ]

]
+ Covf |y,θ,γ

[
Ef̃ | f [f̃ ]

]
, (61)

where the first term simplifies to the conditional covariance in equation (5) and the second
term can be written as k(s̃,S) K-1

f,f Covf |y,θ,γ [f ] K-1
f,f k(S, s̃′). Plugging these into the

equation and simplifying gives us the posterior covariance function

kp(s̃, s̃
′) = k(s̃, s̃′)− k(s̃,S)

(
K-1

f,f −K-1
f,f Covf |y,θ,γ [f ] K-1

f,f

)
k(S, s̃′). (62)

Even if the exact posterior distribution p(f(s̃)|θ, γ), or in other words the posterior
process, was not analytically solvable we can still evaluate its posterior mean and covari-
ance functions easily, as long as we are able to solve the mean Ef |y,θ,γ and covariance
Covf |y,θ,γ [f ]. Following, for example, Csató and Opper (2002) the conditional posterior
mean can be written as

Ef |y,θ,γ [f ] = Kf,f

∫
d f p(f)∂p(y | f)/∂ f

p(y |θ, γ)
, (63)

and a similar result can be obtained for the covariance. The problem with the exact
formulas is that the integrals in them cannot be computed exactly. The common practice
to approximate the posterior distribution p(f |y, θ, γ) is either with Markov chain Monte
Carlo (MCMC) (e.g. Neal, 1997, 1998; Diggle et al., 1998; Christensen et al., 2006;
Vanhatalo and Vehtari, 2007) or by giving an analytic approximation to it (e.g. Rasmussen
and Williams, 2006; Rue et al., 2009; Vanhatalo et al., 2010).

6.2.1 Markov chain Monte Carlo

Monte Carlo methods (Robert and Casella, 2004) are based on sampling random numbers
from the desired distribution and using these samples to approximate the distribution and
its properties. See Figure 4. Hence, we can sample from p(f |y, θ, γ) and use the samples
to represent the posterior distribution of f . In this case, the posterior marginals can be
visualized with histograms and posterior integrals approximated with sample means. For
example, the posterior expectation of f is approximated as

Ef |y,θ,γ [f ] ≈ 1

M

M∑
i=1

f (i), (64)
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where f (i) is the i’th sample from the conditional posterior.
The problem with Monte Carlo methods is how to draw samples from arbitrary dis-

tributions. The challenge can be overcome with Markov chain Monte Carlo (MCMC)
methods (Gilks et al., 1996), where one constructs a Markov chain whose stationary dis-
tribution is the posterior distribution p(f |y, θ, γ) and uses the Markov chain samples to
obtain Monte Carlo estimates. After having the posterior sample of latent variables, we
can sample from the posterior predictive distribution of any set of latent variables f̃ sim-
ply by sampling with each f (i) one f̃

(i)
from p(f̃ | f (i), θ, γ); that is, for each i = 1, . . . ,M

sample
f̃

(i)| f (i), θ, γ ∼ N(Kf̃,f K-1
f,f f (i),Kf̃ ,̃f −Kf̃,f K-1

f,f Kf ,̃f). (65)

Similarly, we can obtain a sample of ỹ by drawing one ỹ(i) for each f̃
(i)

from the obser-
vation model p(y |f̃ , θ, γ). We can also use the samples to approximate distributions of
functions of f . For example, the posterior distribution of the succes probability in (43)
can be approximated by calculating π(f̃ (i)) = 1/(1 + e−f̃

(i)
) with each i = 1, . . . ,M .

Even though MCMC methods are theoretically appealing and the Monte Carlo esti-
mate is proved to converge to the correct distribution as M → ∞, they are often hard to
implement in practice. The reason is that the time a Markov chain needs for convergence
to target distribution depends on the target distribution and on the sampling algorithm.
Moreover, after the convergence the sample chain might mix poorly which results in high
autocorrelation and low number of efficient samples. Models with Gaussian process pri-
ors are notorious for their inferential challenges and there are many algorithms proposed
for them.

STAN uses a tailored Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 1996, 2011)
where the tuning of the sampling parameters is done in automated manner (Hoffman and
Gelman, 2014). Hamiltonian Monte Carlo utilizes the gradient information of the log
posterior distribution to direct the sampling to interesting regions and, hence, to speed
up the convergence and improve mixing. The practical challenge with this method is
how to tune the sampling parameters and in some cases this tuning might be problematic
also with STAN. For example, often the latent variables are heavily dependent in their
posterior distribution so that the posterior surface is narrow in some of the directions.
In these situations it can help to transform the latent variables with their approximate
posterior covariance (Christensen et al., 2006; Vanhatalo and Vehtari, 2007). Hence, in
many cases it helps to define the model so that we sample from the posterior of

z = L−1 f (66)

where L is a matrix that approximates a squareroot of the posterior covariance of f .
Typicaly the posterior dependence comes mostly from the prior covariances and a simple
surrogate would be the cholesky decomposition of the prior covariance LLT = Kf,f . In
STAN this could be implemented so that

...
parameters {

vector[N] z;
}
model {

vector[N] ff;
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z ˜ normal(0, 1);
ff = L*z;

for (n in 1:N)
y[n] ˜ ...

}
generated quantities {

vector[N] f;
// derived quantity (the original latent variables)
f = L*z;

}

The sampling methods for the conditional posterior of the latent variables have re-
ceived considerable attention in the literature. In addition to the above references, some
other approaches are presented, for example, in (Neal, 1997, 1998; Murray et al., 2010).
The elliptical slice sampling method by Murray et al. (2010) has proven to be very effi-
cient and easy to use since it does not require practically any tuning.

6.3 Laplace approximation
There are many analytical approximations for the conditional posterior of the latent vari-
ables. Common with them is that they all are build around the Gaussian approximation
or its extensions. In this section I will consider the Laplace approximation for the con-
ditional posterior of the latent variables. In the Laplace approximation the mean of the
latent variables is approximated by the posterior mode of f and the covariance by the
curvature of the log posterior at the mode. The approximation is constructed from the
second order Taylor expansion of log p(f |y, θ) around the mode f̂ , which gives a Gaus-
sian approximation to the conditional posterior

p(f |y, θ, γ) ≈ q(f |y, θ, γ) = N(f |f̂ ,Σ), (67)

where f̂ = arg maxf p(f |y, θ, γ) and Σ−1 is the Hessian of the negative log conditional
posterior at the mode (Gelman et al., 2013; Rasmussen and Williams, 2006):

Σ−1 = −∇∇ log p(f |y, θ, γ)|f=f̂ = K-1
f,f +W. (68)

If we assume the likelihood is factorizable as in (43), W is a diagonal matrix with entries
Wii = ∇fi∇fi log p(yi|fi, γ)|fi=f̂i . This approximation is a basic building block also
under the Integrated nested Laplace approximation (INLA) scheme for Gaussian Markov
random field models Rue et al. (2009).

The analytic approximation constructed by Laplace approximation assumes a Gaus-
sian form in which case it is natural to approximate the posterior predictive distribution
with Gaussian as well. In this case the equations (60) and (62) give its mean and covari-
ance. The posterior mean of f(x̃) can be approximated from the equation (60) by replac-
ing the posterior mean Ef |y,θ[f ] by f̂ . The posterior covariance is approximated similarly
by using (K-1

f,f +W)−1 in the place of Covf |y,θ[f ]. Thus, after some rearrangements and
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using K-1
f,f f̂ = ∇ log p(y | f)|f=f̂ , the approximate posterior predictive distribution is

f̃ |y, θ, σ2 ∼ GP
(
mp(s̃), kp(s̃, s̃′)

)
, (69)

where the mean and covariance are mp(x̃) = k(s̃,S)∇ log p(y | f)|f=f̂ and kp(s̃, s̃′) =
k(s̃, s̃′) − k(s̃,S)(Kf,f +W−1)−1k(S, s̃′). The approximate conditional predictive den-
sity of a new observation ỹi can now be evaluated, for example, with Monte Carlo or
quadrature integration over each f̃i separately

p(ỹi|y, θ, γ) ≈
∫
p(ỹi|f̃i, γ)q(f̃i|y, θ, γ)df̃i. (70)

Other options for analytic approximation include, for example, expectation propaga-
tion (EP) algorithm and variational Bayes (VB) approximations (a good review is pro-
vided by Bishop, 2006) which produce Gaussian approximations but their parameteriza-
tions may be different from the parameterization of the Laplace approximation. INLA
Rue et al. (2009) and extensions of the Laplace approximation, EP and VB produce
approximations where the shape of the approximating distributions for each, f(si) are
corrected from Gaussian to better approximate the true posterior p(f(si)|y, θ, γ). The
Gaussian approximation can be justified if the conditional posterior is unimodal, which
it is if the likelihood is log concave, and there is enough data so that the posterior will
be close to Gaussian. However, invoking the central limit theorem with GP models is
not straightforward since the number of observations may grow either alongside the la-
tent variables or per latent variable. The central limit theorem may apply in the increase
alongside latent variables case as well if the effective number of latent variables remains
small compared to the number of observations. The goodness of the Gaussian approx-
imation is well discussed, for example, by Nickisch and Rasmussen (2008); Rue et al.
(2009); Vanhatalo et al. (2010). A pragmatic justification for using Gaussian approxi-
mation is that many times it suffices to approximate well the mean and variance of the
latent function. These, on the other hand, fully define Gaussian distribution and one can
approximate the integrals over f̃i by using the Gaussian form for its conditional posterior.

6.4 Marginalization over hyperparameters
6.4.1 Maximum a posterior estimate of hyperparameters

One option to approximate the integral over p(θ, γ|y) is to give the hyperparameters a
point estimate such as the maximum a posterior (MAP) estimate

{θ̂, γ̂} = arg max
θ,γ

p(θ, γ|y) = arg max
θ,γ

[log p(y |θ, γ) + log p(θ, γ)] . (71)

In this approximation, the hyperparameter values are given a point mass one at the poste-
rior mode, and, for example, the marginal posterior of latent variables is approximated as
p(f |y) ≈ p(f |y, θ̂, γ̂) (the other posterior marginals come analogously). Alternatively
the hyperparameter optimization can be interpreted a model selection over a model family
indexed by continuous parameter ϑ = [θT, γT]T (Rasmussen and Williams, 2006).

For the MAP estimate one needs to evaluate the log marginal likelihood. In Gaussian
case this is straightforward since it has an analytic solution (see equation (38)),

log p(y |θ, σ) = −n
2

log(2π)− 1

2
log |Kf,f +σ2I| − 1

2
yT(Kf,f +σ2I)−1 y, (72)
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Figure 4: Illustration of the Laplace approximation (solid line), EP (dashed line)
and MCMC (histogram) for the conditional posterior of a latent variable p(fi|y, θ)
in two applications. On the left, a disease mapping problem with Poisson observa-
tion model (Vanhatalo et al., 2010) where the Gaussian approximation works well.
On the right, a classification problem with probit likelihood where the posterior is
skewed and the Gaussian approximation is clearly a compromise but stillpracti-
cally useful. It should also be noted that EP approximates the mean and variance
better than the Laplace approximation in this case also.

The log marginal likelihood, and thus also the log posterior, is differentiable with respect
to the hyperparameters, which allows a gradient based optimization which can be done
e.g. with STAN.

If the observation model is not Gaussian the marginal likelihood needs to be approxi-
mated. The Laplace approximation to the marginal likelihood is constructed, for example,
by writing

p(y |θ, γ) =

∫
p(y| f , γ)p(f |θ)d f =

∫
exp(g(f))d f , (73)

and making a second order Taylor expansion of g(f) around f̂ . This gives a Gaussian
integral over f multiplied by a constant, and results in the approximation

log p(y |θ, γ) ≈ log q(y |θ, γ) ∝ log p(y|f̂)− 1

2
f̂

T
K-1

f,f f̂ − 1

2
log |B|, (74)

where |B| = |I + W1/2 Kf,f W1/2|. This is the same approximation as the Gaussian
approximation by Rue et al. (2009) derived from p(y, f .θ, γ)/q(f |D, θ, γ)|f=f̂ , where
the denominator is the Laplace approximation in equation (69) (see also Tierney and
Kadane, 1986). The gradients of the approximate log marginal likelihood (74) can be
computed analytically, which enables the use of gradient based optimization with Laplace
approximation (Rasmussen and Williams, 2006). However, in this course we will not
consider this.

The advantage of MAP estimate is that it is relatively easy and fast to evaluate. Op-
timization algorithms need typically at maximum few tens of optimization steps to find
the mode whereas MCMC requires typically hundreds of iteratons to reach convergence
and enough samples to approximate the posterior. The drawback, however, is that MAP
underestimates the uncertainty in hyperparameters.
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6.4.2 Monte Carlo integration

Monte Carlo integration is one of the standard choices to conduct the inference for the hy-
perparameters. A full Monte Carlo estimate for marginal posterior of the latent variables,
p(f |y) is obtained by running MCMC for all the parameters in the model, f , θ, γ. That
is, we sample both the hyperparameters and the latent variables and estimate the needed
posterior statistics by sample estimates or by histograms (Neal, 1997; Diggle et al., 1998).
Sampling both, the hyperparameters and latent variables, is usually slow since there is a
strong correlation between them. This slows the convergence and mixing of the Markov
chain (Vanhatalo and Vehtari, 2007; Vanhatalo et al., 2010). Sampling from the (approxi-
mate) marginal, p(θ, γ|y), is a much easier task since the parameter space is smaller and
correlations are not so high. Tuning the sampler parameters is also the harder the more
parameters are sampled.

Traditional approach to sample from the joint posterior p(f , θ, γ|y) is to conduct the
sampling in Gibbs style so that we sample latent variables from p(f (i) |y, θ(i−1), γ(i−1))
and after that the hyperparameters from p(θ(i), γ(i)|y, f (i)). This approach allows dif-
ferent samplers for the hyperparameters and latent variables which may be beneficial in
some cases (Murray et al., 2010; Vanhatalo et al., 2013). However, in some cases im-
provement might be obtained by sampling directly from the joint posterior (Girolami and
Calderhead, 2011). STAN utilizes the former approach.

6.4.3 Other options for marginalizing over hyperparameters

Section 6.4.1 treated methods to calculate exactly (the Gaussian case) or approximately
(Laplace approximation) the marginal posterior p(θ, γ|y) up to the normalization con-
stant. There the unnormalized posterior was used for optimizing the hyperparameters but
it can also be used for exploring the posterior for purposes of numerical integration with
a finite sum, such as

p(f |D) ≈
M∑
i=1

p(f |y, ϑi)p(ϑi|y)∆i. (75)

Here ϑ = [θT, γT]T and ∆i denotes the area weight appointed to an evaluation point
ϑi. Thus, the latent variable posterior is a mixture of Gaussians. The other marginal
posteriors are approximated similarly with mixture distributions.

(Markov chain) Monte Carlo is one example of the numerical integration of type (75)
where the weigths are ∆i = 1/M . Other option could be, for example, grid integration
where the evaluation points are set into a regular grid. The construction of the grid is
started from the posterior mode ϑ̂, and continued so that the bulk of the posterior mass
is included in the integration. If the grid points are set evenly, the area weights ∆i are
equal. In practice, the construction of the grid is aided by the information about the
Hessian of log p(ϑ|D) at the mode, which would be the inverse covariance matrix for ϑ if
the density was Gaussian. This approximate covariance is used to select the exploration
directions and step sizes as illustrated in Figure 5(a) and discussed by Rue et al. (2009).
The numerical integration using the grid search is feasible only for a small number of
hyperparameters since the number of grid points grows exponentially with the dimension
of the hyperparameter space d.

In order to decrease the number of grid points Rue et al. (2009) suggest a central
composite design (CCD) for choosing the representative points from the posterior of the
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(a) Grid based integration.
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(b) Monte Carlo integration
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(c) Central composite design

Figure 5: Illustration of the grid based, the Monte Carlo and the central composite
design integration over the logarithm of the hyperparameters. The contour shows
the posterior density q(log(ϑ)|D) and the integration points are marked with dots.
The left figure shows also the vectors z along which the points are searched in the
grid integration and central composite desing. The integration is conducted over
q(log(ϑ)|D) rather than q(ϑ|D) since the former is closer to Gaussian. (From
Vanhatalo et al. (2010).)

hyperparameters when the dimensionality d is moderate or high. In this setting, the in-
tegration is considered as a quadratic design problem in a d dimensional space with the
aim in finding points that allow for estimating the curvature of the posterior distribution
around the mode. The design used by Rue et al. (2009) is the fractional factorial design
augmented with a center point and a group of 2d star points. In this setting, the design
points are all on the surface of a d-dimensional sphere and the star points consist of 2d
points along each axis. This is illustrated in Figure 5(c). The number of the design points
grows very moderately and, for example, for d = 6 one needs only 45 points. The CCD
integration can be summarized with the equation (75) where the weights are evaluated as
described by Rue et al. (2009) and Vanhatalo et al. (2010). The CCD integration speeds
up the integration considerably. The accuracy is between the MAP estimate and the full
integration with grid search or Monte Carlo. For example, Rue et al. (2009), Martino
(2007) and Vanhatalo et al. (2010) report good results with this integration scheme with
moderate dimensional parameter space (< 10).

When integrating over hyperparameters, the Monte Carlo and grid integration give
exact results in the limit of an infinite number of evaluation points. This limit, however,
can never be reached, and even finding practically sufficient number of evaluation points
may be an overwhelming task. For this reason Rue et al. (2009) proposed to use the grid
and CCD integration. Grid integration is very efficient for a small number of hyperparam-
eters (less than 4). CCD tries to incorporate the posterior variance of the hyperparameters
into the inference and seems to give good approximation in moderate dimensions. Since
CCD is based on the assumption that the hyperparameter’s posterior is (close to) Gaus-
sian, the densities p(ϑi|D) at the points on the circumference should be monitored in
order to detect serious discrepancies from this assumption. These densities are identical
if the posterior is Gaussian, for which reason great variability on their values indicates
that CCD has failed. The posterior of the hyperparameters may be far from a Gaussian
distribution, but for a suitable transformation the approximation may work well.
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6.5 Summary of the inference methods
The methods treated in this chapter can be arranged in an increasing order of accuracy and
computational time. The choice of the method is then a compromise between these two
attributes. The inference is the fastest when using MAP estimate for the hyperparameters
and Gaussian function for the conditional posterior. With a Gaussian observation model,
the Gaussian conditional distribution is exact and the only source of imprecision is the
point estimate for the hyperparameters. If the observation model is other than Gaussian,
the conditional distribution is an approximation, whose quality depends on, how close to
Gaussian the real conditional posterior is, and how well the mean and variance are ap-
proximated. The form of the real posterior depends on many things for which reason the
Gaussian approximation has to be assessed independently for every data. Methods for as-
sessing the Gaussian approximation are discussed, for example, by Rue et al. (2009) and
Vanhatalo et al. (2010). Tierney and Kadane (1986) provide asymptotic results for the
accuracy of the Laplace approximation and Nickisch and Rasmussen (2008) give exten-
sive comparison between different Gaussian approximations in classification problems.
The Laplace approximation is faster than EP but EP approximates better the posterior
mean and variance. For example, in classification, this is crucial since the posterior of
the latent variables is rather far from normal, as illustrated in Figure 4(b) (see also Kuss
and Rasmussen, 2005; Nickisch and Rasmussen, 2008). However, in many cases Laplace
approximation gives, at a practical level, as good results as full MCMC or EP Vanhatalo
et al. (2010) (see also Figure 4(a)). At the expense of computational time, the approx-
imation to the marginal posterior of a latent variable could be improved by evaluating
correction terms for the EP approximation (Paquet et al., 2009; Cseke and Heskes, 2010)
or by improving the Laplace approximation to marginals (Tierney and Kadane, 1986; Rue
et al., 2009).

A golden standard for the posterior distributions can be obtained by an extensive
MCMC - given it converges and mixes well. If a MAP estimate for the hyperparame-
ters is considered adequate but we want to sample the posterior of the latent variables
we can use Laplace approximation to locate MAP after which the sampling of the latent
variables can be performed efficiently with STAN aided by the variable transformation
(Christensen et al., 2006). Even if the Laplace approximation and EP lacked in accuracy
for the conditional posterior they may approximate the marginal likelihood well. The ac-
curacy of the Laplace approximation depends on the effective number of latent variables
and it is usually more accurate for data sets with many observations per input location
(Rue et al., 2009). EP has been shown to approximate the marginal likelihood rather ac-
curately in many problems (Kuss and Rasmussen, 2005; Nickisch and Rasmussen, 2008),
whereas the Laplace approximation gives somewhat less accurate approximations to the
marginal likelihood. This suggests that EP’s approximation to the marginal likelihood
is more reliable. However, since the predictive inference on f(s) is rather insensitive
to small changes in the hyperparameters around their MAP Laplace approximation and
other analytic approximations to the marginal likelihood are often justified. The identifi-
ability of the hyperparameters is well treated, for example, by Diggle et al. (1998), Zhang
(2004) and Diggle and Ribeiro (2007).
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