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Abstract

These are lecture notes for the course Spatial modeling and Bayesian inference. These
notes are not comprehensive list of all coarse content but summarize key issues covered
during the course. These notes will be updated during the course. The update history is
the following:

• 19.3.2017 Updated section 2.2, Added section 3.

• 10.3.2017 First version of the notes published

1 Preliminaries on spatial data problems and car-
tography
Spatial statistics considers analysis of spatially indexed data. Typical problems are re-
lated to inference and prediction of spatially indexed phenomena. For example, what
is the temperature at a spatial location s = [s1, s2]T and how can we use temperature
measurements to predict the temperature at another location s̃. Similarly we might be
interested in inferring and forecasting temporal trends in spatial phenomena, such as the
temporal change of annual average temperature in Europe.

Spatial problems involve spatially indexed data and traditionally these data are clas-
sified into three types

• Point referenced data are measured at disjoint locations in space. That is each da-
tum contains the information, y(s), at location s ∈ D, whereD is a spatial(temporal)
area of interest. For example, the temperature at a specific location on the earth.

• Areal data describe phenomena over areal regions. That is, a datum yi describes,
for example, the average temperature over region Ai ⊂ D

• Point pattern data describes the spatial presence pattern of a phenomenon. Classical
example is the spatial pattern of trees in a forest. Here, each datum is a location of
a tree, si, and the aim is to analyze the process that leads to a specific presence
pattern.
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In order to analyze spatial data we need a coordinate system for the area of interest.
Here we consider problems on the surface of the earth. There are several coordinate
systems that can be used to describe the location on the earth, the simplest one being the
spherical system where the location is described by the degrees in latitude and longitude
(see exercises for more examples of coordinate systems). However, often the purpose
is to analyze only a subset of the earth’s surface. If this subset is small enough, it is
typically practical to use a map projection. There are two main reasons for this. The map
projections allow easy visualization on two dimensional plane and they allow the use of
Euclidean metric to measure distances between locations (see also section 3).

A map projection is a systematic representation of all or part of earth’s surface on a
plane. It is well known fact from topology that it is impossible to construct a distortion-
free representation of a globe on a flat map. Hence, when building maps decision has to be
made which aspects of the reality we want to reconstruct well and which parts of earth’s
surface the map should represent well. For example the map can be planned to be area
or direction preserving. However, we cannot produce a map projection that is distance
preserving1. Hence, a good projection depends on application and there are numerous
projections published. The general strategy to build maps is to use an intermediate sur-
face that can be flattened. The globe (or part of it) is projected onto this intermediate
surface, developable surface, after which it is flattened to a plane to produce a map. The
most commonly used developable surfaces are the cylinder, the cone, the plane and the
sinusoidal.

2 Gaussian processes

2.1 Definition and basic properties
Consider a collection of random variables {f(s) : s ∈ D} for some region D. We will
typically assume that D ⊂ <2 so that s is a 2 × 1 vector of spatial coordinates. How-
ever, any other dimension is equally possible. We can model f(s) as a stochastic process
indexed by s. Moreover, since we are interested in modelling spatial phenomena the vari-
ables f(s) should be pairwise dependent with strength of dependence that is specified by
their location. See figure 1. We will be using Gaussian processes which can be defined
as follows (e.g. Rasmussen and Williams, 2006; Banerjee et al., 2015):

A Gaussian process is a collection of random variables, any finite number of which have
a joint Gaussian distribution.

Hence, if f(s) follows a Gaussian process, any collection of random variables f =
[f1, ..., fn]T = [f(s1), ..., f(sn)]T at a set of n locations, S = [s1, ..., sn]T, has a multi-
variate Gaussian distribution

f ∼ N(µ,Kf,f) (1)

where µ is the n × 1 mean vector and Kf,f is the n × n covariance matrix. We may
call a Gaussian process, f(s) interchangeably also a latent function or Gaussian random
field and a set of function values, f , Gaussian random variables or latent variables. The

1for a very short introduction see e.g. https://en.wikipedia.org/wiki/Theorema_Egregium
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rationale for this nomenclature will become clear in section 4 when we build hierarchical
models.

The mean vector is formed by a mean function µ(s) which defines the expected value
of a random variable f(s) at any location s. For notational simplicity we will assume
µ(s) ≡ 0 if not otherwise stated. The covariance matrix is constructed from a covariance
function, [Kf,f ]i,j = k(si, sj |θ), which characterizes the covariances between process
realizations at different locations, Cov (f(si), f(sj)) = k(si, sj |θ). The parameter vec-
tor θ collects all the parameters of the covariance function. Covariance function encodes
prior assumptions of the latent function, such as the smoothness and scale of the varia-
tion, and can be chosen freely as long as the covariance matrices produced are symmetric
and positive semi-definite, satisfying

vT Kf,f v ≥ 0,∀v ∈ <n. (2)

An example of a covariance function is the exponential

kexp(si, sj |θ) = σ2
expe

−‖si− sj‖/l, (3)

where ‖si− sj‖ is the euclidean distance (the L2 norm) between locations si and sj , σ2
exp

is the process variance, and l is the length-scale, which governs how fast the correlation
decreases as a function of distance. Covariance functions are discussed more in section 3
and, for example, in (Diggle and Ribeiro, 2007; Finkenstädt et al., 2007; Rasmussen and
Williams, 2006).

Imagine, that we have made observations of a realization of a Gaussian process f at a
set of locations S and we want to use this information to update our knowledge concern-
ing the values of the Gaussian process at some other locations S̃ = [s̃1, ..., s̃ñ]T, s̃i ∈ D.
This is a classical problem which is called Kriging in tradiotional geostatistics. However
we will use the Bayesian terminology and call this prediction. Notice, prediction is here
a statistical term and refers to probabilistic statement at a location from where we do not
have observations. Hence, prediction does not necessarily refer to statements about fu-
ture as in some other fields of science. Other way of stating the problem is that we have
a latent function f(s) for which we have given a Gaussian process prior. We have made
observations of the function in finite number of locations and want to predict its value at
other locations s̃.

By definition of a Gaussian process, the marginal distribution of any subset of latent
variables, the function values at fixed input locations, can be constructed by simply taking
the appropriate submatrix of the covariance and subvector of the mean. (See also exer-
cises.) Hence, the joint prior for latent variables at observation S and prediction locations
S̃ is [

f

f̃

]
|S, S̃, θ ∼ N

(
0,

[
Kf,f Kf ,̃f

Kf̃,f Kf̃ ,̃f

])
, (4)

where Kf,f = k(S,S|θ), Kf ,̃f = KT
f̃ ,f

= k(S, S̃|θ) and Kf̃ ,̃f = k(S̃, S̃|θ). Here, the

covariance function k(·, ·) denotes also vector and matrix valued functions k(s,S) : <d×
<d×n → <1×n, and k(S,S) : <d×n × <d×n → <n×n. The marginal distribution of f̃ is
p(f̃ |S̃, θ) = N(f̃ |0,Kf̃ ,̃f) like the marginal distribution of f given in (1). This marginal is
also called a prior predictive distribution since it is not conditioned to any observations.
The conditional distribution of a set of latent variables given other set of latent variables
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Figure 1: An illustration of a Gaussian process. The upper left figure presents three functions
drawn randomly from a zero mean Gaussian process with squared exponential covariance
function. The hyperparameters are l = 1 and σ2 = 1 and the grey shading represents central
95% probability interval. The upper right subfigure presents the marginal distribution for a
single function value. The lower subfigures present three marginal distributions between two
function values at distinct input locations shown in the upper left subfigure by dashed line.
It can be seen that the correlation between function values f(si) and f(sj) is the greater the
closer si and sj are to each others.

is Gaussian as well. For example, the distribution of f̃ given f is

f̃ | f ,X, X̃, θ ∼ N(Kf̃,f K
-1
f,f f ,Kf̃ ,̃f −Kf̃,f K

-1
f,f Kf ,̃f), (5)

which is called the (conditional) posterior predictive distribution for f̃ after observing the
function values at locations S. Notice that the mean and covariance of the conditional
(posterior predictive) distribution are functions of input vector s̃ (through dependency in
Kf̃ ,̃f , Kf̃,f ) and the observation locations, S as well as the observed function values are
fixed. Hence, the distribution 5 generalizes to any number of prediction locations and
defines a Gaussian process with mean and covariance functions

mp(s̃) = k(s̃,S)K-1
f,f f (6)

kp(s̃, s̃′) = k(s̃, s̃′)− k(s̃,S)K-1
f,f k(S, s̃′). (7)

This can be called also the (conditional) posterior distribution of the latent function f(x̃).
We call the Gaussian process defined by (6) and (7) conditional posterior distribution
since it is conditioned to the values of parameters θ which we will later infer along the
latent variables. The conditional posterior GP is illustrated in Figure 2.
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Figure 2: A conditional (posterior) GP p(f̃ | f , θ). The observations f = [f(0.7) = 1, f(1.3) =
−1, f(2.4) = 0, f(3.9) = 2]T are plotted with circles in the upper left subfigure and the prior
GP is illustrated in the figure 1. When comparing the subfigures to the equivalent ones in
Figure 1 we can see clear distinction between the marginal and the conditional GP. Here,
all the function samples travel through the observations, the mean is no longer zero and the
covariance is non-stationary.

2.2 Observations with Gaussian noise
Typically we do not have direct observations from the Gaussian process but we use it to
model the latent variables (process level) in a hierarchical Bayesian model. Possible the
simplest example is a model with additive Gaussian noise

y(s) = f(s) + ε(s), (8)

where f(s) is a Gaussian process with covariance function k(s, s′) and ε(s) follows a
zero mean Gaussian distribution with variance σ2

ε independently at each location s. Since
the sum of two Gaussian variables is also Gaussian, y(s) follows a Gaussian process with
covariance function k(s, s′) + δs(s

′)σ2
ε , where δs(s′) = 1 if s = s′ and zero otherwise.

Consider that we make now observations y = [y1, ..., yn]T at locations S. In this case the
(conditional) posterior predictive mean and variance of the Gaussian process are

mp(s̃) = k(s̃,S)(Kf,f +σ2
ε I)
−1 y (9)

kp(s̃, s̃′) = k(s̃, s̃′)− k(s̃,S)(Kf,f +σ2
ε I)
−1k(S, s̃′). (10)

To derive this result a bit more formally let’s define the inference and prediction
problem as follows. Consider we have a zero mean Gaussian process f(s) : D → <
where D is the index domain (e.g., a subset of <2). Consider further that we have an
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observation process p(y(si)| f(s)) = p(y(si)| f(si)) where we assume that each ob-
servation is conditionally independent of the other observations given the process re-
alization at that location. Now, consider we have made n observations at locations
S = {s1, ..., sn} and denote by y = [y(si), ..., y(sn)]T the vector of these observations
and by f = [f(s1), ..., f(sn)]T the respective latent variables. Due to the marginaliza-
tion properties of the Gaussian process the prior distribution of the latent variables is
p(f) = N(0,Kf,f). Hence, we can first solve the posterior distribution for the latent
variables at the observation locations

p(f |y) =
p(y | f)p(f)

p(y)
=
N(f |0,Kf,f)Π

n
i=1p(yi|fi)

p(y)
. (11)

For example, in the case of a Gaussian observation model p(yi|fi) = N(yi|fi, σ2
ε ) the

posterior distribution of f is (see exercises)

p(f |y) ∝ N(f |0,Kf,f)Π
n
i=1N(yi|fi, σ2

ε ) (12)

= N
(
f |Kf,f(Kf,f +σ2

ε I
−1)y, (K-1

f,f +σ−2
ε I)−1

)
. (13)

Next, we solve the posterior predictive distribution of the latent function f(s̃) at a new
location s̃ ∈ D. To do this we utilize the marginalization property of the Gaussian process
for a second time to derive the joint distribution of [fT, f̃ ]T, where f̃ = f(s̃). This is given
by equation (4). After this we use the result concerning the conditional distribution f̃ | f
in equation (5) and marginalize over the posterior of f to obtain the posterior predictive
distribution for f̃

p(f̃ |y) =

∫
p(f̃ | f)p(f |y)d f (14)

=

∫
N(f̃ |Kf̃,f K

-1
f,f f ,Kf̃ ,̃f −Kf̃,f K

-1
f,f Kf ,̃f)

N
(
f |Kf,f(Kf,f +σ2

ε I
−1)y, (K-1

f,f +σ−2
ε I)−1

)
d f (15)

= N(f̃ |Kf̃,f(Kf,f +σ2I)−1 y,Kf̃ ,̃f −Kf̃,f(Kf,f +σ2I)−1 Kf ,̃f) (16)

Since this is valid for any s̃ ∈ D the posterior for f(s) is a Gaussian process with mean
and covariance functions as in equations (9)-(10). However, in general, if the observation
model is not Gaussian, the posterior distribution of f(s) is not Gaussian process. This
will be discussed more in Section 4.

In order to calculate the posterior predictive distribution for a new observation, ỹ =
y(s̃) we can utilize the assumption of conditional independence between y(s) given f(s)
to obtain

p(ỹ|y) =

∫
p(ỹ|f̃)p(f̃ |y)df̃ . (17)

In the case of Gaussian observation model this will be

ỹ|y ∼ N(Kf̃,f(Kf,f +σ2I)−1 y, σ2 + Kf̃ ,̃f −Kf̃,f(Kf,f +σ2I)−1 Kf ,̃f) (18)

which differs from the posterior predictive distribution for f(s̃) only in the covariance
which has now the contribution of the noise variance σ2 in it.
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2.3 Linear transformations of (multivariate) Gaussians and sam-
pling from a Gaussian process
Consider a multivariate Gaussian f ∼ N(0,Kf,f) and a linar transformation z = c+Af
where A is an m × n matrix and c an m × 1 vector. The vector z is then Gaussian
distributed, z ∼ N(c,AKf,f A

T). If the matrix AKf,f A is not full rank (for example, if
m > n) then the multivariate normal is degenerate and does not have density. The density
for the transformed vector can be formed by considering a subset of rank(AKf,f A)
coordinates of z and treating the other co-ordinates as their transformation.

The above property allows an efficient way to simulate from a Gaussian process.
Assume we have a way to simulate i.i.d. Gaussian random variables (all computing
programs have Gaussian random number generator). We can simulate from a Gaus-
sian process with mean function µ(s) and covariance function k(s, s′) at locations S =
[s1, ..., sn]T as follows. Construt a vector µ = [µ(s1), ..., µ(sn)]T and a covariance ma-
trix [Kf,f ]i,j = k(si, sj). Form a Cholesky decomposition of the covariance matrix LLT.
Form an n × 1 vector of i.i.d. zero mean and unit variance Gaussian random variables,
z ∼ N(0, I). After this form a vector f = µ + Lz. The vector f is then a sample from
the Gaussian process at locations S. By repeating this procedure you can construct mut-
liple realizations from the same process. (See also exercises). Note! In some cases the
constructed covariance matrix Kf,f may be numerically unstable so that the Cholesky de-
composition does not remain positive definite. In this case adding small constant (“jitter”;
typically < 10−6 is enough) to the diagonal helps.

3 On construction of Gaussian processes and their
covariance functions
In order to build Gaussian process models we need tools to build valid mean and covari-
ance functions. The covariance function has to satisfy the positive definite condition (2).
Hence, for any finite set of locations s1, . . . , sn the covariance function has to produce a
covariance matrix Kf,f such that if f ∼ N(0,K) the variance of vT f is valid for any v;
that is V ar(v f) = vTKv ≥ 0 with strict inequality if not all vi are 0. Hence, any func-
tion that produces positive definite covariance matrices is valid for constructing Gaussian
process. Then a practical problem remains how to construct such functions. After con-
structing a positive definite covariance function, another practical question is what are
the properties of a Gaussian process encoded by a specific covariance function. These
questions have motivated a waste literature in statistics and mathematics (see e.g. ?) and
here we will review few common classes of covariance functions and their properties.
We will also discuss how certain common models can be extended to Gaussian processes
formalism.

3.1 Covariance function terminology and basic results
A covariance function is called stationary if it is a function of h = s− s′ only2. Hence, it
is invariant to translations in the index domain. If the covariance function is a function of

2Note that this means weak stationarity for the corresponding stochastic process whereas strong stationarity
would mean that all of its finite dimensional distributions are invariant to translations.
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distance only ‖s− s′‖ it is called isotropic. For example, an exponential covariance func-
tion (3) is stationary and isotropic. However, if we modify the calculation of the distance
in the input domain D and define an exponential covariance function with dimension
scaling

kexp(si, sj |θ) = σ2
expe

(−ΣD
d=1(si,d−sj,d)2/l2)

1/2

, (19)

the resulting covariance remains stationary but is not isotropic if D > 1. In higher
dimensional index space different length-scales, ld, per input dimension allows for differ-
ent smoothness per dimension. Moreover, this example illustrates also that a covariance
function that is isotropic in dimension D need not be isotropic in D + 1.

In case of stationary covariance functions we can calculate a semivariogram, γ(h) =
k(0)− k(h), and a variogram, 2γ(h), functions. These terms arise from traditional geo-
statistics where variograms and semivariograms were empirically estimated from data.
After this the covariance function parameters were chosen so that the semivariogram of a
chosen covariance function matched the empirical semivariogram points, for example, in
root mean square sense. In this course we will not use variograms but the term is good to
know since it is still used extensively in some fields of geosciences. In case of stationary
covariance function the semivariogram might depend on the direction it is calculated with
respect to whereas with isotropic covarance functions the variograms do not depend on
the direction. There are three chraracteristics that are traditionally associated with vari-
ograms, the nugget, the sill and the range. By definition the nugget is lim‖h‖→0+ γ(h).
The sill is defined to be lim‖h‖→∞ γ(h). The range is the distance at which γ(h) reaches
its sill. For example, consider the Gaussian observation model (8) where the Gaussian
process has an exponential covariance function (3). The nugget of the variogram of y(s)
would be σ2

ε and the sill would be σ2
exp + σ2

ε . However, the sill is reached only asymptot-
ically for which reason the range does not exist.

In model based spatial statistics, which is considered in this course, range is typically
defined to be the distance at which the covariance has dropped to 5% of its maximum.
However, this might vary in the literature for which reason care need to be taken when
interpreting the term. (See also exercises.)

In general if we have two valid covariance functions k1(s, s′) and k2(s, s′), then the
functions ak1(s, s′) + bk2(s, s′), ck1(s, s′)k2(s, s′) and their combinations are valid co-
variance functions for all a, b, c > 0 (see exercises). Similarly, if k1(s, s′) = k1(s1, s

′
1)

is a function of only the first element of s and k2(s, s′) = k2(s2, s
′
2) is a function of

the second element of s then any multiplicative or additive combination of k1(s, s′) and
k2(s, s′) is a valid covariance function. This extents to any combination of elements in s
(however, see also discussion in section 3.4). For example, if f(s, t) : <2 × < → < is a
Gaussian process in space, s, and time, t, one common approach to define a covariance
function for this process is to use a separable form k ((s, t), (s′, t′)) = k1(s, s′)k2(t, t),
where k1(·, ·) and k2(·, ·) are some radial basis functions. Convolution is yet another way
to construct new covariance functions. If k1(h) and k2(h) are valid covariance functions
then k(h) =

∫
k1(h− t)k2(t)dt is a valid covariance function as well.

3.2 Stationary covariance functions and Bochner’s Theorem
One very influential result for Gaussian process theory is the Bochner’s Theorem which
provides a tool to construct stationary positive definite covariance functions in an arbitrary
r-dimensional Euclidean space. For real-valued processes, Bochner’s Theorem states that
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k(h), where h = s− s′, is positive definite if and only if

k(h) =

∫
cos
(
wTh

)
G(dw), (20)

where G(dw) is a bounded, positive, symmetric about 0 measure in <r. Since G(dw) is
assumed symmetric and eiw

Th = cos(wTh) + i sin(wTh) we have

k(h) =

∫
eiw

ThG(dw). (21)

If G(dw) is not assumed symmetric about 0, equation (21) still provides a valid covari-
ance function but now for a complex-valued random process on <r (?).

Hence, G(dw)/k(0) = G(dw)/
∫
G(dw) is referred as the spectral distribution of

k(h). Typically G(dw) is constructed so that it has a density with respect to Lebesgue
measure and G(dw) = g(w)dw. Then, g(h)/k(0) is referred to spectral density of a
covariance function k(h). For example, the Matérn class of covariance functions which
are widely used in spatial statistics are constructed using Cauchy spectral density. See,
e.g., (Rasmussen and Williams, 2006, pp. 84-85) and (Banerjee et al., 2015, p. 62).
A more thorough discussion on Bochner’s Theorem is provided by, e.g. Banerjee et al.
(2015).

Here it should be noticed also that Bochner’s Theorem is valid in Euclidean space and
we cannot straighforwardly apply covariance functions constructed by Bochner’s Theo-
rem in other spaces. Hence, if we want to define a valid covariance function on the
surface of a globe we need different tools for that. Further discussion on such covariance
functions are provided, for example, by Banerjee et al. (2015); Lindgren et al. (2011);
Banerjee (2005).

3.3 Gaussian process interpretation for linear model
Consider the model f(x) = xT β where x is a p × 1 vector of covariates and β ∼
N(0,Σβ). Hence, for any collection of covariate vectors X = [xT

1 , . . . ,x
T
n ]T the joint

distribution of f = [f(x1), . . . , f(xn)]T is a multivariate Gaussian f ∼ N(0,XΣβX
T)

(section 2.3). Hence, a linear model can be seen as a Gaussian process with covariance
function k(x,x′) = xT Σβ x

′ (see (Rasmussen and Williams, 2006) for a more detailed
treatment).

3.4 Additive and hierarchical Gaussian processes
In section 2.2 we considered additive Gaussian observation error. More generally, let
f(s) = h(s) + g(s), where h(s) and g(s) are mutually independent Gaussian processes
with covariance functions kh(s, s′) and kg(s, s′). Then, f(s) follows a Gaussian process
with covariance function kh(s, s′) + kg(s, s

′). Consider now that we have made observa-
tions of f(s) at locations S. Then the (conditional) posterior distribution of for example
h(s) is a Gaussian process with mean and covariance functions

mh| f (s̃) = kh(s̃,S)(Kg,g +Kh,h)−1 y (22)

kh| f (s̃, s̃
′) = kh(s̃, s̃′)− kh(s̃,S)(Kg,g +Kh,h)−1kh(S, s̃′), (23)
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where [Kg,g]i,j = kg(si, sj) and [Kh,h]i,j = kh(si, sj). Naturally, this extends also to
the case of noisy observations (section 2.2).

Let’s next look at the linear Gaussian model in section 3.3 in a bit more detail. Lets
rewrite the linear model as f(z) = zT η where z is a vector of covariates so that z =
[1, x1, . . . , xp]

T and η = [α, β1, . . . , βp]
T. Let’s further define the prior η ∼ N(0,Ση)

where

Ση =

[
σ2
α 0
0 Σβ

]
(24)

Now, we can write

f(z) = zT η (25)

= α+ xT β = f(x), (26)

where α is an intercept with prior distribution α ∼ N(0, σ2
α) and β is the vector of linear

weights as in section 3.3 with the prior β ∼ N(0,Σβ). There are now few ways to inter-
pret this model. One is the Gaussian process interpretation where f(z) ∼ GP (0, k(z, z′))
where k(z, z′) = σ2

α + xT Σβ x
′ = kα(z, z′) + kx(z, z′). And hence, for any set of

covariates x1, . . . ,xn the latent vector f has a multivariate Gaussian distribution f ∼
N(0,Kα + Kx). Hence, the model is a Gaussian process with an additive covariance
function. However, the model does not correspond to sum of two Gaussian processes!
Even though k(z, z′) is a valid covariance function the first additive element in it is not a
valid covariance function on its own. The matrix Kα = σ2

α11
T, where 1 is an n×1 vector

of ones, is not positive definite. This is natural since α is a random variable with Gaussian
distribution. Another way to define this model is through a hierarchical construction

f(x) ∼ GP
(
µ, k(x,x′)

)
µ ∼ N(0, σ2

α),

where σ2
α is the prior variance of the mean of a Gaussian process. Hence, by a coice of

covariance function we can actually implicitly model some hierarchical latent Gaussian
models (see Rasmussen and Williams, 2006, for more discussion on mean functions in
GPs).

Next we will consider a Gaussian processes in the setting of traditional random effects
models (?) which are common in many practical applications. Consider a setup where
n experiments are conducted at m different experimental plots as illustrated in Figure
3. This could be, for example, aggricultural experiment where each plot, z, corresponds
to one field which is divided into experimental units within it. The experimental setup
is encoded by covariates x telling, for example, how much fertilization is used in the
experiment. The plots are typically not identical but, for example, the soil composition,
depth of the fertile soil etc. may vary. Hence, we are anticipating that, in addition to
a covariate effect, there is a plot level effect to the outcome of an experiment yi, i =
1, . . . , n. Moreover, since each plot and each experiment within a plot is at different
spatial location we might anticipate that there is also spatially correlated randomness in
the outcomes of the experiments due to, for example, varying weather conditions during
the experiments. A typical way to analyze this kind of data is to construct a hierarchical
additive model

y(xi, zi, si) = xT
i β + εzi + φ(si) + εi (27)
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where the effect of experimental treatments are assumed linear with weights β ∼ N(0,Σβ),
εzi ∼ N(0, σ2

z) is a random effect capturing the plot level effect, φ(si) ∼ GP (0, k(s, s′))
is a spatial random effect (a Gaussian process) and εi is an i.i.d. random error per mea-
surement.

Let’s assume si ∈ S ⊂ <2, xi ∈ <p and zi ∈ N is the identifier of plot i. We can
then formulate the hierarchical additive model (27) as y(xi, zi, si) = f(xi, zi, si) + εi
where f(x, z, s) is a Gaussian process in a domain D ⊂ S × <p × N with an additive
covariance function of the form

k
(
(s,x, z), (s′,x′, z′)

)
= ks(s, s

′) + k(x,x′) + σ2
zδz(z

′), (28)

The covariance function ks(s, s′) could be any radial basis covariance function suitable
for modeling spatial dependence and k(x,x′) would be the covariance function corre-
sponding to the linear model and δz(z′) is a delta function returning 1 if z = z′ and zero
otherwise. Let’s now order the data so that we stack together the observations in ascend-
ing order of plot indicator; that is first the observation from plot 1, then from plot 2 and
so on all the way to plot m. Then the prior for the latent vector f would be a zero mean
multivariate Gaussian with a covariance matrix

Kf,f =
[
Ks

]
+
[
XΣβX

T
]

+


[
σ2
zJm1

] [
σ2
zJm2

]
. . . [

σ2
zJmn

]
 (29)

where Jm1 is a matrix of size m1 ×m1 with one in every element and mi is the number
of measurements in the zi’th plot. The matrices Ks and XΣβX

T are full n× n matrices
whereas the rightmost matrix corresponding to covariance function σ2

zδz(z
′) is a block

diagonal matrix. Hence, the plot structure in the data transfers naturally to structured
covariance matrix in the prior of the latent variables. Another way to derive the covariance
function σ2

zδz(z
′) would be to define a piece wise constant mean function with Gaussian

priors for the constants.
The model structure (27) is present in many other settings as well. Some examples

include species distribution modeling (?), genetics (?), ... However, depending on the
application the random effect might be indexed in some other domain than space.

3.5 Spatial misalignment (change of support)

4 Hierarchical spatial models
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