Spatial modelling and Bayesian inference
Jarno Vanhatalo, University of Helsinki 4 EXERCISES, WEEK 4

4 Exercises, week 4

The exercise solutions have to be returned at the latest on Sunday April 9’th.

e Pen and paper exercises: you can scan the solutions and combile them into pdf or write
them with Latex/word/... Compile all the answers into one pdf file

e Computer exercises: Report the answers to no-coding parts of exercises (if any) in pdf
and compile with answers to pen and paper exercises. Additionally, send also the code
used to solve the exercises. Note!

— Only code should be returned. Do not send data files!

— Write and comment the code so that it can be run by using your code only and the
data provided in the course web pages.

— If the lecturer cannot understand or run your code you will not get points from
coding part even if the results were correct.

¢ zip all files into one folder to reduce the size of submission.

Send the zipped files to jarno.vanhatalo @helsinki. fi.

For basic properties and results concerning Gaussian distributions and processes see €.g.
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://www.gaussianprocess.org/gpml/chapters/

4.1 Priors for transformed parameters and sampling for restricted pa-
rameters, 2 points

Consider you have a parameter ¢ € R, and you want to give it a prior so that
1/0 ~ Student—t (v = 4,4 =0,s2 = 1). (13)

That is, you want to define a prior implicitly so that the prior for the inverse of the parameter
follows Student-¢ distribution. Solve the probability density function for §. Write a pseudo
code on how would you implemet this distribution in STAN.

Consider you have a parameter § € R, with a posterior distribution p(#|y) that is not
analytically trackable. Hence, you want to use MCMC to sample from p(f|y). However,
you have a device to sample only from distributions that are defined in 8. Hence, you want
to make a tranformation w = log(#) and sample from the distribution of p(w|y). Solve the
posterior distribution p(w|@). Write a pseudo code on how would you implement the sampling
from p(#]y) in STAN using this result.

Hint! You may use the results concerning the dimension preserving transformation of random
variables. Let p,(u) be the probability density of the vector u. We transform to v = f(u)
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where v has the same number of components as u. If p,(u) is a continuous distribution and
v = f(u) is a one-to-one transformation, then the joint density of the transformed vector is

po(v) = [pulf~(v))

where |J| is the determinant of the Jacobian of the transformation v = f~!(v).

4.2 Computer: Additive Gaussian process, 3 points

In this exercise we will analyse the Mauna Loa Co2 data' discussed also by Rasmussen and
Williams (2006, Chapter 5). Here we will implement three different models which will later
be used to demonstrate model comparison.

Load the Mauna Loa data from course web page. We will analyze the data with the model

yt:) = f(t) +a (14)

where the error terms are i.i.d. Gaussian distributed, ¢; ~ N(0,0.) and the latent function
follows one of the three alternatives

) J(t) ~ GP(0, ke (£,1))
2) () ~ GPO, kep(t, 1) + Ksexp(t,1))
3)  f(t) ~ GP(a+ th, kexp(t,t') + kexp(t, 1)

where o ~ N(0,03) and § ~ N(0,03), kexp(-, ) is the exponential covariance function and
Ksexp(+, -) is the squared exponential covariance function. In model 2) the assumption is that the
exponential covariance function corresponds to a GP with short (monthly) time scale changes
whereas the squared exponential corresponds to a GP with long term (decadal) changes. In
model 3) the linear model for the mean can be transformed to covariance function (see lecture
notes) and the linear part is assumed to model any trends in the data. The priors for the model
parameters should be weakly informative so that
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The variances of the intercept and linear term should be fixed to a large number, for example,
o2 = ag = 10, so that the linear model corresponds to "fixed effects”.

Notice that the prior for the length-scale of the squared exponential is given through its
inverse. The reason for this is that we want a priori to favor squared exponential to capture
long term changes (=long length-scale). There is no direct way to implement prior for inverse
of a parameter in STAN. Hence, you either need to define the model using the inverse length-
scale or solve the induced prior for [s.y, (see exercise 4.1).

Your tasks are the following:

'http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2
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a) Implement each of the models 1-3) and infer the posterior distribution of their hyperpa-
rameters with STAN, conditional to the full data. Report the posterior distributions of the
hyperparameters as histograms and plot the predicted function f(¢). (1 point)

b) With models 2-3) calculate the posterior predictive distribution of the alternative model
components. That is in 2) visualize the posterior distribution of the function related to the
exponential and squared exponential parts (e.g. plot the mean and 95% credible interval).
In 3) plot the linear part a + ¢4 and the squared exponential and the exponential covariance
function parts. In addition, calculate the posterior of «v and 3 (see the solutions to exercises of
week 3). (1 point)

¢) Redo the posterior fitting of part a) with data only from years 1958-1970 and 1980-2000
and use the model to predict the whole time span from 1958-2008. Plot the prediction and
data to the same figure. What are the differences between the models? Which model looks
most reasonable from the predictive point of view? (1 point)

Hint! You should use your earlier code or earlier exercise results as the base code to solve this

exercise. Additionally, see Section 3.4 from the lecture notes and earlier exercises for hints
related to additive GPs and linear model in GP framework.
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