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3 Exercises, week 3
The exercise solutions have to be returned at the latest on Sunday April 2’nd.

• Pen and paper exercises: you can scan the solutions and combile them into pdf or write
them with Latex/word/... Compile all the answers into one pdf file

• Computer exercises: Report the answers to no-coding parts of exercises (if any) in pdf
and compile with answers to pen and paper exercises. Additionally, send also the code
used to solve the exercises. Note!

– Only code should be returned. Do not send data files!

– Write and comment the code so that it can be run by using your code only and the
data provided in the course web pages.

– If the lecturer cannot understand or run your code you will not get points from
coding part even if the results were correct.

• zip all files into one folder to reduce the size of submission.

Send the zipped files to jarno.vanhatalo@helsinki.fi.

For basic properties and results concerning Gaussian distributions and processes see e.g.
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://www.gaussianprocess.org/gpml/chapters/

3.1 Hyper-parameter inference and spatial prediction, 4 points
We continue from the exercise 2.5 b). You need the raster maps, polygons and nutrient con-
sentration data files:

• GoFgrids2000.csv (raster maps from the Gulf of Finland)

• GoFpolygon.txt (polygon coordinates to plot the shore line of the GoF)

• GoFnutrients 2000 2004.csv (a data file with measurements of nutrients in the GoF
from 2001-2004)

Consider a Gaussian process model with additive Gaussian noise for the average winter ni-
trogen concentration. That is, let f(si) denote the average winter nitrogen consentration at
location si and let

yi = f(si) + �i, (10)

be the measurement with i.i.d. noise �i ∼ N(0, σ2). Give a Gaussian process prior for the
nitrogen concentration, that is f(s) ∼ GP (0, k(s, s�)), where k(s, s�) is either the squared
exponential or exponential covariance function. We give hyperpriors for the hyperparameters
σ2, l and σ2

cf, where σ2
cf is the maginitude of the covariance function.
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You are provided with R template exerciseTemplate week 1.R and few STAN
model files. You need also either the model solutios or your own solutions to the exercise 2.5.
Your task is to fill in the missing parts of the exercise template and to answer to the following
questions

a) test different priors for the hyperparameters. Compare the priors provided in the .stan file
with at least very flat priors and very informative priors. You may choose the priors yourself
and you need to report whether the MAP and MCMC (see part d) solutions are sensitive to
the priors. If they are, report how.

b) Calculate the posterior predictive distribution of the average nitrogen concentration in each
of the water framework directive region using the MAP estimate of the hyperparameters so
that you calculate the average over the lattice grid cells that fall into that region. for exapmle,
the average nitrogen concentration in area 1 is NA1 = 1

M1

�M1

i=1 f(s̃i) where s̃i ∈ A1. Visu-
alize the distribution. What is the probability that the average concentration is less than 28
micro.mol / l?

c) Calculate the posterior predictive distribution of the difference in the average nitrogen con-
centrations between the water framework directive region 1 and the other regios. Use the
MAP estimate of the hyperparameters. Visualize the distributions. What is the probability
that the average concentration is less in region 1 than in the other regions?

d) Do the MCMC sampling for the hyperparameters, check for convergence, calculate PSRF
and effective number of samples. After this marginalize over the posterior of the hyperpa-
rameters and calculate the posterior predictive mean and variance of nitrogen concentration at
each grid cell using the law of total variance

E (f(s)) = E (E (f(s)|θ)) (11)
V ar (f(s)) = E (V ar(f(s)|θ)) + V ar (E(f(s)|θ)) . (12)

Redo calculations of part b) but now so that you marginalize over the posterior of the hy-
perparameters (you can utilize the above laws in this as well). Compare your results to the
results that you got with the MAP estimates for the hyperparameters. Note! Even if you sam-
ple, e.g., 1000 samples with MCMC, it is enough to use about 100 to calculate the predictive
summaries.

Hints. You may want to consult http://mc-stan.org/documentation/. When
calculating areal averages remember that the latent function values at different lattice grid
cells are correlated. Remember also that a (weighted) sum of Gaussian random variables is
also Gaussian. Hence, NAi

= wT
i f̃ i ∼ N(·, ·), where wi = [1/Mi, . . . , 1/Mi]

T is a length Mi

vector of weights and f̃ i is a vector of latent variables at the grid cells of region i. Similarly,
the difference between two averages can be written as NAi

−NAj
= wT

i f̃ i−wT
j f̃ j = wij f̃ ij ∼

N(·, ·) where wij = [wT
i ,−wT

j ]
T and f̃ ij = [f̃

T

i , f̃
T

j ]
T. Additional hints are provided in the

exercise template.
Note also that this exercise requires care in coding. The asked quantities can be very time

consuming to calculate if you calculate them naively. For this reason you are provided hints
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in the exercise template. One specific thing to avoid is the construction of large covariance
matrices. For example, when calculating the variance of f(s) at lattice grid cells you should
not construct the full covariance matrix between all the latent variables. Similarly, when
calculating the areal means use only those lattice cells that you really need.

3.2 The rule of total variance
The rule of total variance is handy, if you are able to analytically solve the conditional vari-
ances and conditional means. Hence, given a result E (f(s)) = E (E (f(s)|θ)) show that
V ar (f(s)) = E (V ar(f(s)|θ)) + V ar (E(f(s)|θ)).

Hints. Start with the equation for the marginal variance V ar[f(s)] = E[f(s)2] − E[f(s)]2,
solve E(f(s)2|θ), plug it into the marginal variance and simplify.
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