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2 Exercises, week 2
The exercise solutions have to be returned at the latest on Sunday March 26’th.

• Pen and paper exercises: you can scan the solutions and combile them into pdf or write
them with Latex/word/... Compile all the answers into one pdf file

• Computer exercises: Report the answers to no-coding parts of exercises (if any) in pdf
and compile with answers to pen and paper exercises. Additionally, send also the code
used to solve the exercises. Note!

– Only code should be returned. Do not send data files!

– Write and comment the code so that it can be run by using your code only and the
data provided in the course web pages.

– If the lecturer cannot understand or run your code you will not get points from
coding part even if the results were correct.

• zip all files into one folder to reduce the size of submission.

Send the zipped files to jarno.vanhatalo@helsinki.fi.

For basic properties and results concerning Gaussian distributions and processes see e.g.
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://www.gaussianprocess.org/gpml/chapters/

2.1 On posterior predictive distributions
a) Consider the case where we have direct observations from a Gaussian process. Show that
posterior predictive distribution reduces to the observations if it is calculated at observation
locations. Show also that this does not happen in a case where we make noisy observations
y(s) = f(s) + �(s) where �(s) ∼ N(0, σ2

� ) are i.i.d. noise terms.

b) Consider we make observations y = [y1, ..., yn]
T and model them with yi = f+�i where f =

[f1, ..., fn] is a vector of latent variables with a multivariate Gaussian prior distribution, f ∼
N(0,Kf,f) and �i ∼ N(0, σ2

� ) are i.i.d. noise terms. We can now write this as a hierarchical
model

p(y | f) =
n�

i=1

N(yi|fi, σ2
� )

p(f) = N(f |0,Kf,f).

Derive the posterior distribution of the latent variables by using the Bayes theorem p(f |y) =
p(y | f)p(f)

p(y)
.
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c) Consider a GP with zero mean and any covariance function of the form k(s, s�) = k(|| s− s� ||)
(for example, the exponential, Matern class of covariance functions and the squared exponen-
tial covariance functions). What are the posterior predictive mean and variance of f(s) as
|| s− s� || → ∞, where s� ∈ S is the collection of data locations.

d) Assume y(x) = xT β + � where x is an p × 1 vector of covariates and β ∼ N(0,Σ) a
p × 1 vector of linear weights and �(s) ∼ N(0, σ2

� ) are i.i.d. noise terms. Given a set of
observations y = [y(x1), ..., y(xn)]

T, derive the equations for posterior predictive mean and
variance of f(x) = xT β. Derive also the equations for the posterior distribution of β and what
are its posterior mean and covariance? Consider next p = 1, how do the posterior predictive
mean and variance of f(x) behave when the prediction points are close to training data or far
from it?

2.2 Exponential covariance function and AR(1) model
Consider an autoregressive time series model of order one (AR(1) model)

Xt = φXt−1 + �t (6)

where Xt ∈ � is a random variable and the error terms are independent and indentically
distributed �t ∼ N(0, σ2) and Xt0 = 0. Show that, with some range for φ this model induces
an exponential covariance function between the random variables, that is Cov[Xt, Xt−k] =
σ2
ee

−k/l where σ2
e and l can be represented by φ and σ2.

2.3 More covariances and means
a) Show that, if k1(s, s�) and k2(s, s

�) are valid covariance functions, so are k1(s, s�)+k2(s, s
�)

and k1(s, s
�)k2(s, s�).

b) Suppose f(s) is a Gaussian process with mean surface µ(s) and covariance function
k(s, s�). Let z(s) be the induced log Gaussian process, i.e., f(s) = logz(s) . Find the mean
surface and the covariance function for the z(s) process. If f(s) is stationary, is z(s) neces-
sarily stationary?

2.4 Computer: Simulations from a Gaussian process
Let f(s) be a Gaussian process with an exponential covariance function

Cov (f(s), f(s�)) = k(s, s�) = σ2e−|| s− s� ||/l, (7)

where || s− s� || is the euclidean distance between locations s and s�, σ2 the process variance
and l the length-scale.
a) What is the range after which the correlation has dropped to 5% of its maximum?

b) Write an R/Matlab function to construct the covariance matrix between function values at
arbritrary sets of locations. That is, let S = {s1, ..., sn1} and S� = {s�1, ..., s�n2

} be collections
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of spatial locations. The function should construct a matrix K so that Ki,j = k(si, s
�
j) for any

S, S�, l and σ2. Use the function to

• plot the exponential covariance as a function of distance

• plot the variogram related to the exponential covariance. The variogram of a (stationary
and isotropic) covariance function is γ(h) = k(0) − k(h), where k(h) = k(s + h, s)
is the covariance function written as a function of distance, h, between two locations, s
and s+ h.

• draw realizations of functions from a GP with a zero mean and an exponential covari-
ance function from range s ∈ [0, 10] (that is f(s) : � → �) by using the results from
exercise 1.5 and plot them.

• draw realizations of functions from a GP with a zero mean and an exponential covari-
ance function from range s ∈ [0, 10] × [0, 10] (that is f(s) : �2 → �) and plot them
either as contour plots, 3D surfaces or colored images.

Test l = 2 and σ2 = 1 and at least two other combinations of parameters.

c) Repeat the steps a) and b) for a squared exponential covariance function

k(s, s�) = σ2e−|| s− s� ||2/l2 . (8)

What are the differences between the two models.

Hints. To draw realizations from a GP in 1D (f(s) : � → �) divide the input space into,
e.g. 100 equally spaced intervals and use the ends of these intervals as the set of locations,
S̃ = [s̃1, ..., s̃n]

T, where GP is simulated at. Calculate the covariance matrix between function
values at the s ∈ S, use this covariance matrix to draw the realizations and then plot them
with respect to S. In 2D do otherwise similarly but divide the input space into a lattice grid
of, e.g. 50 × 50 grid cells (see exercise template for an example how to construct a lattice
grid) . Squared exponential covariance function often leads to numerically unstable Cholesky
decomposition. Hence, if Cholesky decomposition does not remain positive definite add jitter
to it (see lecture notes).

2.5 Computer: Prediction with a Gaussian process
a) Assume, we have observed f = [1,−1, 0, 2]T at S = [0.7, 1.3, 2.4, 3.9]T from the Gaussian
processes defined in exercise 2.4. Write a Matlab/R function that calculates the marginal
posterior mean, E[f(s)| f ,S], and variance, V ar[f(s)| f ,S], at any location s ∈ �. Use the
code to visualize the posterior mean, 95% central credible interval of f(s) and random draws
from p(f(s)| f ,S) in the range s ∈ [0, 5].

b) Continue from exercise 1.2. You need the raster maps, polygons and nutrient consentration
data files:

• GoFgrids2000.csv (raster maps from the Gulf of Finland)
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• GoFpolygon.txt (polygon coordinates to plot the shore line of the GoF)

• GoFnutrients 2000 2004.csv (a data file with measurements of nutrients in the GoF
from 2001-2004)

Build a Gaussian process model with additive Gaussian noise for the average winter nitrogen
concentration. That is, let f(si) denote the average winter nitrogen consentration at location
si and let

yi = f(si) + �i, (9)

be the measurement with i.i.d. noise �i ∼ N(0, σ2). Give a Gaussian process prior for the
nitrogen concentration, that is f(s) ∼ GP (0, k(s, s�)), where k(s, s�) is either the squared
exponential or exponential covariance function. Solve the posterior distribution for f(s) and
visualize its posterior mean and variance over the whole GoF. Test different combinations
values for the noise variance, length-scale and magnitude. Report the values with σ2 = 0.1,
l = 20km and σ2

cf = 1, where σ2
cf is the maginitude of the covariance function. Note! before

modeling it is good to “standardize” the observations so that yi = (yi− ȳ)/sd(y), where ȳ and
sd(y) are the sample mean and standard deviation of observations.

Hints. You have calculated the winter average nitrogen consentrations in the exercise 1.2.
GoFgrids2000.csv provides you the prediction grid similar to the grid you used in exercise
2.4. Hence, you need to repeat the 2D task of exercise 2.4 with this real data. After predicting
to the grid in GoFgrids2000.csv you can visualize the map as you visualized, e.g., the depth
layer in exercise 1.2.
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