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Abstract

These are lecture notes for the course Spatial modeling and Bayesian inference. These
notes are not comprehensive list of all coarse content but summarize key issues covered
during the course. These notes will be updated during the course. The update history is
the following:

• 10.3.2017 First version of the notes published

1 Preliminaries on spatial data problems and car-
tography
Spatial statistics considers analysis of spatially indexed data. Typical problems are re-
lated to inference and prediction of spatially indexed phenomena. For example, what
is the temperature at a spatial location s = [s1, s2]

T and how can we use temperature
measurements to predict the temperature at another location s̃. Similarly we might be
interested in inferring and forecasting temporal trends in spatial phenomena, such as the
temporal change of annual average temperature in Europe.

Spatial problems involve spatially indexed data and traditionally these data are clas-
sified into three types

• Point referenced data are measured at disjoint locations in space. That is each da-
tum contains the information, y(s), at location s ∈ D, whereD is a spatial(temporal)
area of interest. For example, the temperature at a specific location on the earth.

• Areal data describe phenomena over areal regions. That is, a datum yi describes,
for example, the average temperature over region Ai ⊂ D

• Point pattern data describes the spatial presence pattern of a phenomenon. Classical
example is the spatial pattern of trees in a forest. Here, each datum is a location of
a tree, si, and the aim is to analyze the process that leads to a specific presence
pattern.
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In order to analyze spatial data we need a coordinate system for the area of interest.
Here we consider problems on the surface of the earth. There are several coordinate
systems that can be used to describe the location on the earth, the simplest one being the
spherical system where the location is described by the degrees in latitude and longitude
(see exercises for more examples of coordinate systems). However, often the purpose
is to analyze only a subset of the earth’s surface. If this subset is small enough, it is
typically practical to use a map projection. There are two main reasons for this. The map
projections allow easy visualization on two dimensional plane and they allow the use of
Euclidean metric to measure distances between locations (see also section 3).

A map projection is a systematic representation of all or part of earth’s surface on a
plane. It is well known fact from topology that it is impossible to construct a distortion-
free representation of a globe on a flat map. Hence, when building maps decision has to be
made which aspects of the reality we want to reconstruct well and which parts of earth’s
surface the map should represent well. For example the map can be planned to be area
or direction preserving. However, we cannot produce a map projection that is distance
preserving1. Hence, a good projection depends on application and there are numerous
projections published. The general strategy to build maps is to use an intermediate sur-
face that can be flattened. The globe (or part of it) is projected onto this intermediate
surface, developable surface, after which it is flattened to a plane to produce a map. The
most commonly used developable surfaces are the cylinder, the cone, the plane and the
sinusoidal.

2 Gaussian processes

2.1 Definition and basic properties
Consider a collection of random variables {f(s) : s ∈ D} for some region D. We will
typically assume that D ⊂ <2 so that s is a 2 × 1 vector of spatial coordinates. How-
ever, any other dimension is equally possible. We can model f(s) as a stochastic process
indexed by s. Moreover, since we are interested in modelling spatial phenomena the vari-
ables f(s) should be pairwise dependent with strength of dependence that is specified by
their location. See figure 1. We will be using Gaussian processes which can be defined
as follows (e.g. Rasmussen and Williams, 2006; Banerjee et al., 2015):

A Gaussian process is a collection of random variables, any finite number of which have
a joint Gaussian distribution.

Hence, if f(s) follows a Gaussian process, any collection of random variables f =
[f1, ..., fn]T = [f(s1), ..., f(sn)]T at a set of n locations, S = [s1, ..., sn]T, has a multi-
variate Gaussian distribution

f ∼ N(µ,Kf,f) (1)

where µ is the n × 1 mean vector and Kf,f is the n × n covariance matrix. We may
call a Gaussian process, f(s) interchangeably also a latent function or Gaussian random
field and a set of function values, f , Gaussian random variables or latent variables. The

1for a very short introduction see e.g. https://en.wikipedia.org/wiki/Theorema_Egregium
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rationale for this nomenclature will become clear in section 4 when we build hierarchical
models.

The mean vector is formed by a mean function µ(s) which defines the expected value
of a random variable f(s) at any location s. For notational simplicity we will assume
µ(s) ≡ 0 if not otherwise stated. The covariance matrix is constructed from a covariance
function, [Kf,f ]i,j = k(si, sj |θ), which characterizes the covariances between process
realizations at different locations, Cov (f(si), f(sj)) = k(si, sj |θ). The parameter vec-
tor θ collects all the parameters of the covariance function. Covariance function encodes
prior assumptions of the latent function, such as the smoothness and scale of the varia-
tion, and can be chosen freely as long as the covariance matrices produced are symmetric
and positive semi-definite, satisfying

vT Kf,f v ≥ 0,∀v ∈ <n. (2)

An example of a covariance function is the exponential

kexp(si, sj |θ) = σ2expe
(−|| si− sj ||/l), (3)

where || si−sj || is the euclidean distance between locations si and sj , σ2exp is the process
variance, and l is the length-scale, which governs how fast the correlation decreases as
a function of distance. Covariance functions are discussed more in section 3 and, for
example, in (Diggle and Ribeiro, 2007; Finkenstädt et al., 2007; Rasmussen and Williams,
2006).

Imagine, that we have made observations of a realization of a Gaussian process f at a
set of locations S and we want to use this information to update our knowledge concern-
ing the values of the Gaussian process at some other locations S̃ = [s̃1, ..., s̃ñ]T, s̃i ∈ D.
This is a classical problem which is called Kriging in tradiotional geostatistics. However
we will use the Bayesian terminology and call this prediction. Notice, prediction is here
a statistical term and refers to probabilistic statement at a location from where we do not
have observations. Hence, prediction does not necessarily refer to statements about fu-
ture as in some other fields of science. Other way of stating the problem is that we have
a latent function f(s) for which we have given a Gaussian process prior. We have made
observations of the function in finite number of locations and want to predict its value at
other locations s̃.

By definition of a Gaussian process, the marginal distribution of any subset of latent
variables, the function values at fixed input locations, can be constructed by simply taking
the appropriate submatrix of the covariance and subvector of the mean. (See also exer-
cises.) Hence, the joint prior for latent variables at observation S and prediction locations
S̃ is [

f

f̃

]
|S, S̃, θ ∼ N

(
0,

[
Kf,f Kf ,̃f

Kf̃,f Kf̃ ,̃f

])
, (4)

where Kf,f = k(S,S|θ), Kf ,̃f = KT
f̃ ,f

= k(S, S̃|θ) and Kf̃ ,̃f = k(S̃, S̃|θ). Here, the

covariance function k(·, ·) denotes also vector and matrix valued functions k(s,S) : <d×
<d×n → <1×n, and k(S,S) : <d×n × <d×n → <n×n. The marginal distribution of f̃ is
p(f̃ |S̃, θ) = N(f̃ |0,Kf̃ ,̃f) like the marginal distribution of f given in (1). This marginal is
also called a prior predictive distribution since it is not conditioned to any observations.
The conditional distribution of a set of latent variables given other set of latent variables
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Figure 1: An illustration of a Gaussian process. The upper left figure presents three functions
drawn randomly from a zero mean Gaussian process with squared exponential covariance
function. The hyperparameters are l = 1 and σ2 = 1 and the grey shading represents central
95% probability interval. The upper right subfigure presents the marginal distribution for a
single function value. The lower subfigures present three marginal distributions between two
function values at distinct input locations shown in the upper left subfigure by dashed line.
It can be seen that the correlation between function values f(si) and f(sj) is the greater the
closer si and sj are to each others.

is Gaussian as well. For example, the distribution of f̃ given f is

f̃ | f ,X, X̃, θ ∼ N(Kf̃,f K
-1
f,f f ,Kf̃ ,̃f −Kf̃,f K

-1
f,f Kf ,̃f), (5)

which is called the (conditional) posterior predictive distribution for f̃ after observing the
function values at locations S. Notice that the mean and covariance of the conditional
(posterior predictive) distribution are functions of input vector s̃ (through dependency in
Kf̃ ,̃f , Kf̃,f ) and the observation locations, S as well as the observed function values are
fixed. Hence, the distribution 5 generalizes to any number of prediction locations and
defines a Gaussian process with mean and covariance functions

mp(s̃) = k(s̃,S)K-1
f,f f (6)

kp(s̃, s̃′) = k(s̃, s̃′)− k(s̃,S)K-1
f,f k(S, s̃′). (7)

This can be called also the (conditional) posterior distribution of the latent function f(x̃).
We call the Gaussian process defined by (6) and (7) conditional posterior distribution
since it is conditioned to the values of parameters θ which we will later infer along the
latent variables. The conditional posterior GP is illustrated in Figure 2.
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Figure 2: A conditional (posterior) GP p(f̃ | f , θ). The observations f = [f(0.7) = 1, f(1.3) =
−1, f(2.4) = 0, f(3.9) = 2]T are plotted with circles in the upper left subfigure and the prior
GP is illustrated in the figure 1. When comparing the subfigures to the equivalent ones in
Figure 1 we can see clear distinction between the marginal and the conditional GP. Here,
all the function samples travel through the observations, the mean is no longer zero and the
covariance is non-stationary.

2.2 Noisy observations
Typically we do not have direct observations from the Gaussian process but we use it to
model the latent variables (process level) in a hierarchical Bayesian model. Possible the
simplest example is a model with additive Gaussian noise

y(s) = f(s) + ε(s), (8)

where f(s) is a Gaussian process with covariance function k(s, s′) and ε(s) follows a
zero mean Gaussian distribution with variance σ2ε independently at each location s. Since
the sum of two Gaussian variables is also Gaussian y(s) follows a Gaussian process with
covariance function k(s, s′) + δs(s

′)σ2ε , where δs(s′) = 1 if s = s′ and zero otherwise.
Consider that we make now observations y = [y1, ..., yn]T at locations S. In this case the
(conditional) posterior predictive mean and variance of the Gaussian process are

mp(s̃) = k(s̃,S)(Kf,f +σ2ε I)
−1 y (9)

kp(s̃, s̃′) = k(s̃, s̃′)− k(s̃,S)(Kf,f +σ2ε I)
−1k(S, s̃′). (10)

See also exercises.
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2.3 Additive Gaussian processes
More generally, let f(s) = h(s) + g(s), where h(s) and g(s) are mutually independent
Gaussian processes with covariance functions kh(s, s′) and kg(s, s′). Then, f(s) follows
a Gaussian process with covariance function kh(s, s′) + kg(s, s

′). Consider now that we
have made observations of f(s) at locations S. Then the (conditional) posterior distribu-
tion of for example h(s) is a Gaussian process with mean and covariance functions

mh| f (s̃) = kh(s̃,S)(Kg,g +Kh,h)−1 y (11)

kh| f (s̃, s̃
′) = kh(s̃, s̃′)− kh(s̃,S)(Kg,g +Kh,h)−1kh(S, s̃′), (12)

where [Kg,g]i,j = kg(si, sj) and [Kh,h]i,j = kh(si, sj). Naturally, this extends also to
the case of noisy observations (section 2.2).

2.4 Linear transformations of (multivariate) Gaussians and sam-
pling from a Gaussian process
Consider a multivariate Gaussian f ∼ N(0,Kf,f) and a linar transformation z = c+Af
where A is an m × n matrix and c an m × 1 vector. The vector z is then Gaussian
distributed, z ∼ N(c,AKf,f A

T). If the matrix AKf,f A is not full rank (for example, if
m > n) then the multivariate normal is degenerate and does not have density. The density
for the transformed vector can be formed by considering a subset of rank(AKf,f A)
coordinates of z and treating the other co-ordinates as their transformation.

The above property allows an efficient way to simulate from a Gaussian process.
Assume we have a way to simulate i.i.d. Gaussian random variables (all computing
programs have Gaussian random number generator). We can simulate from a Gaus-
sian process with mean function µ(s) and covariance function k(s, s′) at locations S =
[s1, ..., sn]T as follows. Construt a vector µ = [µ(s1), ..., µ(sn)]T and a covariance ma-
trix [Kf,f ]i,j = k(si, sj). Form a Cholesky decomposition of the covariance matrix LLT.
Form an n × 1 vector of i.i.d. zero mean and unit variance Gaussian random variables,
z ∼ N(0, I). After this form a vector f = µ + Lz. The vector f is then a sample from
the Gaussian process at locations S. By repeating this procedure you can construct mut-
liple realizations from the same process. (See also exercises). Note! In some cases the
constructed covariance matrix Kf,f may be numerically unstable so that the Cholesky de-
composition does not remain positive definite. In this case adding small constant (“jitter”;
typically < 10−6 is enough) to the diagonal helps.

Consider also a linear model f(x) = xT β, where x is a p × 1 vector of covariates
and β a p × 1 vector of coeffcients with Gaussian prior β ∼ N(0,Σ). Since f(x) is
linear transformation of β the model can be thought to define a Gaussian process whose
realizations are all linear functions of x. See exercises.
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2.5 Spatial misalignment (change of support)

3 On covariance functions and relation to classical
geostatistics

4 Hierarchical spatial models
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