Department of Mathematics and Statistics
Real Analysis I
Exercise 7
3-4.5.2017

1. Let $E \subset \mathbb{R}$ be Lebesgue-measurable and $m(E)>0$. Show that

$$
E-E=\{a-b: a, b \in E\}
$$

contains an interval.
2. (a) Let $G \subset \mathbb{R}^{n}$ be an open set. Show that every point in G is a density point of G.
(b) Demonstrate with the help of an example that a point in the complement of an open set G can be a density point of G.
(c) Construct a subset A of \mathbb{R}, such that A is not open, even though every point $x \in A$ is a density point of A.
3. Let $\mathbb{Q}=\left\{q_{k}: k \in \mathbb{N}\right\}$ be the set of all rational numbers. Define

$$
f(x)=\sum_{\substack{k \in \mathbb{N} \\ q_{k} \leq x}} 2^{-k}, \quad x \in \mathbb{R} .
$$

Prove:
(a) $f: \mathbb{R} \rightarrow(0,1)$ is strictly increasing.
(b) f is continuous at $x \Longleftrightarrow x \in \mathbb{R} \backslash \mathbb{Q}$.
4. (a) Exhibit a (simple) example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$, which has bounded variation, but is not continuous.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}x \sin \frac{1}{x}, & \text { if } 0<x \leq 1 \\ 0, & \text { if } x=0\end{cases}
$$

Show that f is continuous, but that f does not have bounded variation.
5. The function $f:[a, b] \rightarrow \mathbb{R}$ is a Lipschitz-function, if there is a constant $L<\infty$, so that $|f(x)-f(y)| \leq L|x-y|$ for all $x, y \in[a, b]$. Show:
(a) every continuously differentiable function $f:[a, b] \rightarrow \mathbb{R}$ is Lipschitz,
(b) every Lipschitz-function has bounded variation,
(c) every Lipschitz-function is differentiable a.e.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be of bounded variation. Denote $V(x)=V_{f}(a, x)$. Prove that f is continuous $\Longleftrightarrow V$ is continuous.

