Department of Mathematics and Statistics
Real Analysis I
Exercise 5
12.4.2017, 20.4.2017

1. Prove that one can not, in general, choose the set F in Egorov's theorem so that $\mu(X \backslash F)=0$.
2. Give an example of functions $f \in L^{1}(\mathbb{R})$ and $g \in L^{1}(\mathbb{R})$ such that the function

$$
y \mapsto f(x-y) g(y)
$$

is not integrable for all $x \in \mathbb{R}$.
3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous and $g_{\varepsilon}=m(B(0, \varepsilon))^{-1} \chi_{B(0, \varepsilon)}$. Prove that $g_{\varepsilon} * f(x) \rightarrow f(x)$ as $\varepsilon \rightarrow 0+$.
4. Suppose that $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$, and $g \in L^{1}\left(\mathbb{R}^{n}\right)$. Prove that $f * g(x)$ exists for a.e. $x \in \mathbb{R}^{n}, f * g \in L^{p}\left(\mathbb{R}^{n}\right)$, and

$$
\|f * g\|_{p} \leq\|f\|_{p}\|g\|_{1} .
$$

5. Let $g \geq 0$ be a measurable function in \mathbb{R}^{n}. Suppose that there exists a constant C such that $\|f * g\|_{p} \leq C\|f\|_{p}$ for every non-negative $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Prove that $C \geq\|g\|_{1}$.
6. Prove the following covering theorem: Let $\left\{B\left(x_{i}, r_{i}\right)\right\}, i \in I$, be a finite collection of balls in a metric space (X, d). Then there exists $J \subset I$ such that the balls $B\left(x_{i}, r_{i}\right), i \in J$, are mutually disjoint and

$$
\bigcup_{i \in I} B\left(x_{i}, r_{i}\right) \subset \bigcup_{i \in J} B\left(x_{i}, 3 r_{i}\right) .
$$

