Department of Mathematics and Statistics Real Analysis I Exercise 5 12.4.2017, 20.4.2017

- 1. Prove that one can not, in general, choose the set F in Egorov's theorem so that $\mu(X \setminus F) = 0$.
- 2. Give an example of functions $f \in L^1(\mathbb{R})$ and $g \in L^1(\mathbb{R})$ such that the function

 $y \mapsto f(x-y)g(y)$

is not integrable for all $x \in \mathbb{R}$.

- 3. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous and $g_{\varepsilon} = m (B(0, \varepsilon))^{-1} \chi_{B(0,\varepsilon)}$. Prove that $g_{\varepsilon} * f(x) \to f(x)$ as $\varepsilon \to 0+$.
- 4. Suppose that $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, and $g \in L^1(\mathbb{R}^n)$. Prove that f * g(x) exists for a.e. $x \in \mathbb{R}^n$, $f * g \in L^p(\mathbb{R}^n)$, and $\|f * g\|_p \le \|f\|_p \|g\|_1$.
- 5. Let $g \ge 0$ be a measurable function in \mathbb{R}^n . Suppose that there exists a constant C such that $||f * g||_p \le C ||f||_p$ for every non-negative $f \in L^p(\mathbb{R}^n)$. Prove that $C \ge ||g||_1$.
- 6. Prove the following covering theorem: Let $\{B(x_i, r_i)\}, i \in I$, be a finite collection of balls in a metric space (X, d). Then there exists $J \subset I$ such that the balls $B(x_i, r_i), i \in J$, are mutually disjoint and

$$\bigcup_{i\in I} B(x_i, r_i) \subset \bigcup_{i\in J} B(x_i, 3r_i).$$