Department of Mathematics and Statistics Real analys I Exercise 4 5-6.4.2017

- 1. Let (X, Γ, μ) be a complete measure space, $1 \leq p < \infty$, and $f_i \in L^p(X)$, $i \in \mathbb{N}$. Assume that f is a measurable function so that $\|f_i f\|_p \to 0$. Show that there is a subsequence (f_{i_k}) of the sequence (f_i) so that $f_{i_k} \to f$ almost everywhere.
- 2. Suppose that $\mu(X) < \infty$. Prove that

$$\|f\|_{\infty} = \lim_{p \to \infty} \|f\|_p.$$

for all $f \in L^{\infty}(\mu)$. Is the assumption $\mu(X) < \infty$ necessary (and why)?

- 3. Let C(I), I = [0, 1], be the vector space of all continuous functions $f: I \to \mathbb{R}$.
 - (a) Prove that $C(I) \subset L^p(I, m_1)$ for all $1 \le p \le \infty$.
 - (b) Prove that C(I) is complete with respect to the norm $\|\cdot\|_{\infty}$.
 - (c) Prove by a counterexample that C(I) is not complete with respect to the norm $\|\cdot\|_p$ for $1 \le p < \infty$.
- 4. Let (X, Γ, μ) be a complete measure space and $1 \le p, q < \infty$.
 - (a) Suppose that $f_i \in L^p$, $i \in \mathbb{N}$, $||f_i f||_p \to 0$ and $f_i \to g$ a.e. Show that f = g a.e.
 - (b) Suppose that $f_i \in L^p \cap L^q$, $i \in \mathbb{N}$, $||f_i f||_p \to 0$ and $||f_i g||_q \to 0$. Show that f = g a.e.
- 5. Let $1 \leq p < \infty$ and $f, f_k \in L^p(X), k \in \mathbb{N}$. Suppose that

$$f_k \to f$$
 a.e. and $||f_k||_p \to ||f||_p$.

Prove that $||f_k - f||_p \to 0$, in other words, $f_k \to f$ in $L^p(X)$.

6. Let $1 and <math>q = \frac{p}{p-1}$. We say that a sequence $(u_j), u_j \in L^p$, converges weakly in L^p to a function $u \in L^p$ if

$$\int_X u_j g \, d\mu \to \int_X u g \, d\mu \text{ as } j \to \infty$$

for all $g \in L^q$.

- (a) Prove that $f_j \to f$ weakly in L^p if $f_j \to f$ in L^p .
- (b) Let X = [0, 1] and $u_j = j^{1/p} \chi_{[0, 1/j]}$ for j = 1, 2, ... Prove that (u_j) converges to 0 weakly in L^p but not in L^p .