Department of Mathematics and Statistics
Real analys I
Exercise 3
29-30.3.2017

1. Let (X, Γ, μ) be a complete measure space and let $f \in L^{\infty}(X)$. Show that

$$
\|f\|_{\infty}=\inf \{\sup \{|f(x)|: x \in X \backslash N\}: N \in \Gamma, \mu(N)=0\} .
$$

2. Let $\mu(X)<\infty$ and $1 \leq q<p<\infty$.
(a) Show without using Hölder's inequality that $L^{p}(\mu) \subset L^{q}(\mu)$.
(b) Show (by using Hölder's inequality) that

$$
\|f\|_{q} \leq\|f\|_{p}(\mu(X))^{(p-q) / p q}
$$

$$
\text { for } f \in L^{p}(\mu)
$$

3. Show that $L^{p}(\mu) \cap L^{q}(\mu) \subset L^{r}(\mu)$ if $1 \leq p \leq r \leq q \leq \infty$.
4. Let X be an arbitrary set, $\Gamma=\mathcal{P}(X)$, and μ the counting measure on X, that is, $\mu(A)=\# A$ for $A \subset X$. [In this case we denote $\ell^{p}(X)=L^{p}(X, \mu)$.] Let $1 \leq q \leq p \leq \infty$. Show that $\ell^{q}(X) \subset \ell^{p}(X)$ and

$$
\|f\|_{\infty} \leq\|f\|_{p} \leq\|f\|_{q} \leq\|f\|_{1} .
$$

Compare this fact with Theorem 1.33.
5. Suppose that $f_{j} \rightarrow f$ in $L^{p}\left(\mathbb{R}^{n}\right)$ and $g_{j} \rightarrow g$ in $L^{q}\left(\mathbb{R}^{n}\right)$, where $p, q>1$ and $\frac{1}{p}+\frac{1}{q}=1$. Show that $f_{j} g_{j} \rightarrow f g$ in $L^{1}\left(\mathbb{R}^{n}\right)$.
6. Let (X, Γ, μ) be a measure space, $1 \leq p \leq q<\infty$, and $A \in \Gamma$ a measurable set so that $0<\mu(A)<\infty$. Show that

$$
\left(\frac{1}{\mu(A)} \int_{A}|f|^{p} d \mu\right)^{1 / p} \leq\left(\frac{1}{\mu(A)} \int_{A}|f|^{q} d \mu\right)^{1 / q}
$$

for all $f \in L^{q}(A)$.

