Department of Mathematics and Statistics Real analys I Exercise 2 22-23.3.2017

- 1. Let (X, Γ, μ) be a neasure space. Suppose that (X, \mathcal{F}, ν) is a complete measure space (i.e. μ is a complete measure) such that $\Gamma \subset \mathcal{F}$ and $\nu |\Gamma = \mu$. Prove that $\overline{\Gamma} \subset \mathcal{F}$ and $\nu |\overline{\Gamma} = \overline{\mu}$.
- 2. Let $\mu = m_n | \operatorname{Bor} \mathbb{R}^n$. Construct an example of a sequence of Borel functions $f_j \colon \mathbb{R}^n \to \mathbb{R}, \ j \in \mathbb{N}$, and a function $f \colon \mathbb{R}^n \to \mathbb{R}$ such that $f_j(x) \to f(x) \mu$ -a.e. x as $j \to \infty$ and that f is not a Borel function.
- 3. Find a sequence $p = (p_1, p_2, ...)$ so that the corresponding Cantor set C(p) has measure (1-dimensional Lebesgue measure) $\frac{1}{4}$.
- 4. Let (f_j) be a sequence of nonnegative Lebesgue-measurable functions $f_j \colon \mathbb{R} \to \mathbb{R}$ such that

$$\int_{\mathbb{R}} f_j \, dm \to 0.$$

Is it true that necessarily $f_j(x) \to 0$ for a.e. $x \in \mathbb{R}$? [Why??]

5. Let $f: B^n(0,1) \to \dot{\mathbb{R}}, f(x) = \log|x|$. For which values of $p \in [1,\infty)$ does it hold that

$$\int_{B^n(0,1)} |f|^p dm < \infty?$$

6. Construct examples of integrable functions (over \mathbb{R}) $f_i, f: \mathbb{R} \to \mathbb{R}$, $i \in \mathbb{N}$, so that $f_i \to f$ uniformly, but

$$\int_{\mathbb{R}} |f_i - f| dm \not\to 0.$$