PDE II

Demo 4

1. Prove that $W^{1, p}\left(\mathbb{R}^{n}\right)=W_{0}^{1, p}\left(\mathbb{R}^{n}\right)$.
2. Prove that if $u \in W^{1, p}(\Omega)$ and $\eta \in C_{0}^{\infty}(\Omega)$, then $u \eta \in W_{0}^{1, p}(\Omega)$.
3. Show by example that if $u \in L^{1}(\Omega)$ and there is $C>0$ such that

$$
\left\|\Delta^{h} u\right\|_{L^{1}\left(\Omega^{\prime}\right)} \leq C
$$

for all $0<|h|<\frac{1}{2} \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$, it does not necessarily follow that $u \in W^{1,1}\left(\Omega^{\prime}\right)$.
4. Suppose that $f_{i}, f \in L^{2}(\Omega), i=1,2, \ldots$. Prove that

$$
f_{i} \rightarrow f \text { strongly in } L^{2}(\Omega)
$$

if and only if

$$
f_{i} \rightharpoonup f \text { weakly in } L^{2}(\Omega) \text { and } \lim _{i \rightarrow \infty}\left\|f_{i}\right\|_{L^{2}(\Omega)}=\|f\|_{L^{2}(\Omega)}
$$

5. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set. Suppose that $f \in L^{p}(\Omega)$ for all $1<p<\infty$ and

$$
\lim _{p \rightarrow \infty}\|f\|_{L^{p}(\Omega)}=M<\infty
$$

Show that $f \in L^{\infty}(\Omega)$ and $\|f\|_{L^{\infty}(\Omega)}=M$.

