PDE II Demo 4

- 1. Prove that $W^{1,p}(\mathbb{R}^n) = W_0^{1,p}(\mathbb{R}^n)$.
- 2. Prove that if $u \in W^{1,p}(\Omega)$ and $\eta \in C_0^{\infty}(\Omega)$, then $u\eta \in W_0^{1,p}(\Omega)$.
- 3. Show by example that if $u \in L^1(\Omega)$ and there is C > 0 such that

$$||\Delta^h u||_{L^1(\Omega')} \le C$$

for all $0 < |h| < \frac{1}{2} \text{dist}(\Omega', \partial \Omega)$, it does not necessarily follow that $u \in W^{1,1}(\Omega')$.

4. Suppose that $f_i, f \in L^2(\Omega), i = 1, 2, \dots$ Prove that

$$f_i \to f$$
 strongly in $L^2(\Omega)$

if and only if

$$f_i \to f$$
 weakly in $L^2(\Omega)$ and $\lim_{i \to \infty} ||f_i||_{L^2(\Omega)} = ||f||_{L^2(\Omega)}$.

5. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. Suppose that $f \in L^p(\Omega)$ for all 1 and

$$\lim_{p \to \infty} ||f||_{L^p(\Omega)} = M < \infty.$$

Show that $f \in L^{\infty}(\Omega)$ and $||f||_{L^{\infty}(\Omega)} = M$.