PDE II

Demo 3

1. Assume $0<\beta<\gamma \leq 1$. Prove the interpolation inequality

$$
\|u\|_{C^{0, \gamma}(\Omega)} \leq C\|u\|_{C^{0, \beta}(\Omega)}^{\frac{1-\gamma}{1-\gamma}}\|u\|_{C^{0,1}(\Omega)}^{\frac{\gamma-\beta}{1-\beta}}
$$

2. Prove that if $u \in W^{1, p}((0,1))$ for some $1 \leq p<\infty$, then u is equal a.e. to an absolutely continuous function (that is, for any $\varepsilon>0$, there is $\delta>0$ such that for any sequence of pairwise disjoint sub-intervals $\left[a_{i}, b_{i}\right] \subset(0,1)$ satisfying

$$
\sum_{i}\left|b_{i}-a_{i}\right|<\delta,
$$

we have

$$
\left.\sum_{i}\left|u\left(b_{i}\right)-u\left(a_{i}\right)\right|<\varepsilon .\right)
$$

and u^{\prime} (which exists a.e.) belongs to $L^{p}((0,1))$.
3. Suppose that Ω is a domain in \mathbb{R}^{n} and $u \in W^{1, p}(\Omega)$ satisfies

$$
D u=0 \quad \text { a.e. in } \Omega .
$$

Prove that u is a constant a.e. in Ω.
4. Assume that $F: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1}, with F^{\prime} bounded. Suppose that $\Omega \subset \mathbb{R}^{n}$ is open, bounded, and $u \in W^{1, p}(\Omega)$ for some $1<p<\infty$. Let $v=F(u)$. Show that

$$
v_{x_{i}}=F^{\prime}(u) u_{x_{i}} \quad \text { and } F(u) \in W^{1, p}(\Omega)
$$

5.

(i) Prove that if $u \in W^{1, p}(\Omega)$, then $|u| \in W^{1, p}(\Omega)$.
(ii) Prove that if $u \in W^{1, p}(\Omega)$, then $u^{+}=\max (u, 0), u^{-} \in W^{1, p}(\Omega)$ and

$$
D u^{+}= \begin{cases}D u & \text { a.e. on }\{u>0\} \\ 0 & \text { a.e. on }\{u<0\} .\end{cases}
$$

(iii) Prove

$$
D u=0 \quad \text { a.e. on }\{u=0\} .
$$

