PDE II

Demo 1

1. Let $1<p<\infty$ and $p^{\prime}=p /(p-1)$. Show that for all $a, b \geq 0$ and $\varepsilon>0$,
i) $\quad a b \leq \frac{a^{p}}{p}+\frac{b^{p^{\prime}}}{p^{\prime}}$;
ii) $a b \leq \varepsilon a^{p}+C(\varepsilon) b^{p^{\prime}}$,
where $C(\varepsilon)=(\varepsilon p)^{-\frac{1}{p-1}} / p^{\prime}$.
2. Let $1<p<\infty$ and $p^{\prime}=p /(p-1)$. Let $\Omega \subset \mathbb{R}^{n}$ be an open set. Suppose that $u \in L^{p}(\Omega)$ and $v \in L^{p^{\prime}}(\Omega)$. Show that

$$
\int_{\Omega}|u v| d x \leq\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\Omega}|v|^{p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}}
$$

3. Let $A \in \mathbb{S}^{n \times n}$ be a symmetric matrix. Suppose that $A \geq 0$, that is, all of the eigenvalues of A are nonnegative. Show that for all $\xi, \eta \in \mathbb{R}^{n}$,

$$
(A \xi, \eta) \leq(A \xi, \xi)^{\frac{1}{2}}(A \eta, \eta)^{\frac{1}{2}}
$$

4. Let $\Omega \subset \mathbb{R}^{n}$ be an open set and $u \in L^{2}(\Omega)$. Suppose that

$$
\int_{\Omega} u \varphi d x=0
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$. Show that $u(x)=0$ for almost every $x \in \Omega$ (with respect to the Lebesgue measure).
5. Let α be a constant such that $0<\alpha<1$. Define the function $u: B(0,1)=$ $\left\{y \in \mathbb{R}^{2}:|y|<1\right\} \rightarrow \mathbb{R}$ as

$$
u(x)=|x|^{\alpha-1} x_{1}, \quad \text { for } \quad x=\left(x_{1}, x_{2}\right) \in B_{1}
$$

Define

$$
A(x)=\left(\begin{array}{cc}
\frac{x_{1}^{2}+\alpha^{2} x_{2}^{2}}{|x|^{2}} & \left(1-\alpha^{2}\right) \frac{x_{1} x_{2}}{|x|^{2}} \\
\left(1-\alpha^{2}\right) \frac{x_{1} x_{2}}{|x|^{2}} & \frac{\alpha^{2} x_{1}^{2}+x_{2}^{2}}{|x|^{2}}
\end{array}\right)
$$

Show that
i) $\alpha^{2}|\xi|^{2} \leq(A(x) \xi, \xi) \leq|\xi|^{2}, \quad \forall x \in B_{1}, \xi \in \mathbb{R}^{2}$.
ii) u is a solution of

$$
\operatorname{div}(A(x) \nabla u)=0 \quad \text { in } B(0,1) \backslash\{0\} .
$$

