Department of Mathematics and Statistics
Measure and Integral
Exercise 7
Extra exercises, 2017

You may gain extra credit points by returning your solutions (in written) either to the lecturer or your instructor by Friday, March 10, 4 pm.

1. Find the limit

$$
\lim _{k \rightarrow \infty} \int_{0}^{\infty} \frac{d x}{\sqrt{x+e^{k(x-1)}}}
$$

2. Let $\left(f_{j}\right)_{j=1}^{\infty}$ be a sequence of measurable functions $f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that the sum $\sum_{j=1}^{\infty}\left|f_{j}\right|$ is integrable. Prove that

$$
\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{n}} f_{j}=0
$$

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be integrable. Prove that the function $g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
g(x)=\int_{-\infty}^{\infty} f(t) \sin (x t) d t, x \in \mathbb{R}
$$

is continuous.
4. Find the limit

$$
\lim _{n \rightarrow \infty} \int_{-n}^{n} e^{-n x^{2}} d x
$$

5. Find the limit

$$
\lim _{k \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \left(x^{k}\right)}{x^{k-1}} d x
$$

6. Let $f:[0,1] \rightarrow \mathbb{R}$ be measurable. Prove that the functions

$$
g_{n}(x)=\frac{\cos f(x)}{1+n(f(x))^{2}}
$$

are integrable over the interval $[0,1]$ and that the limit

$$
a=\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(x) d x
$$

exists. Find all the possible values of a, when f runs through all measurable functions $f:[0,1] \rightarrow \mathbb{R}$.

