Department of Mathematics and Statistics
Measure and Integral
Exercise 4
15-17.2.2017

1. If $\left(A_{n}\right)_{n=1}^{\infty}$ is a sequence of subsets of X, we denote
$\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} A_{k}\right)$ and $\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} A_{k}\right)$.
$[\lim \inf =$ limes inferior, $\lim \sup =$ limes superior $]$
Let (X, Γ, μ) be a measure space and $A_{j} \in \Gamma$ for all $j \in \mathbb{N}$.
(a) Prove that

$$
\liminf _{j \rightarrow \infty} A_{j} \in \Gamma, \quad \limsup _{j \rightarrow \infty} A_{j} \in \Gamma
$$

and

$$
\mu\left(\liminf _{j \rightarrow \infty} A_{j}\right) \leq \lim _{k \rightarrow \infty}\left(\inf _{j \geq k} \mu\left(A_{j}\right)\right) .
$$

(b) Prove that

$$
\mu\left(\limsup _{j \rightarrow \infty} A_{j}\right) \geq \lim _{k \rightarrow \infty}\left(\sup _{j \geq k} \mu\left(A_{j}\right)\right),
$$

if $\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right)<\infty$.
(c) Prove the so-called Borel-Cantelli Lemma: If $\sum_{j=1}^{\infty} \mu\left(A_{j}\right)<\infty$, then $\mu\left(\lim \sup _{j \rightarrow \infty} A_{j}\right)=0$, that is, almost all points belong to at most finitely many A_{j} 's.
2. Suppose that $A_{1} \subset A_{2} \subset A_{3} \subset \cdots \subset \mathbb{R}^{n}$. Prove that

$$
m^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} m^{*}\left(A_{i}\right) .
$$

3. Prove that the set $A=\left\{(x, y) \in \mathbb{R}^{2}: x>1\right.$ ja $\left.0 \leq y x^{2}<1\right\}$ is measurable.
4. Let $A \subset \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}$. Let

$$
A_{r}=\{x \in A: f(x)>r\},
$$

when $r \in \mathbb{R}$. Prove: if $m_{n}^{*}\left(A_{0}\right)>0$, there exists $r>0$ such that $m_{n}^{*}\left(A_{r}\right)>0$.
5. Let $A \subset \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}$. Suppose that there exist sets B_{1}, B_{2}, \ldots such that $A=\cup_{i=1}^{\infty} B_{i}$ and the restriction $f \mid B_{i}$ is measurable for every i. Prove that f is measurable.
6. Let $A_{k} \subset[0,1], k=1,2, \ldots$, be measurable. Suppose that

$$
m\left(A_{k}\right)>\frac{2^{k}-1}{2^{k}}
$$

for all $k \in \mathbb{N}$. Prove that the intersection $\bigcap_{k=1}^{\infty} A_{k}$ is non-empty.

