Department of Mathematics and Statistics Measure and Integral Exercise 3 8-10.2.2014

- 1. True or false (and why)?
 - (a) If $A \subset \mathbb{R}^n$ is open, then its boundary ∂A is measurable.
 - (b) If $B \subset \mathbb{R}^n$ is an arbitrary set, then ∂B is measurable.
 - (c) If $A \subset \mathbb{R}$ is open and bounded, then $m_1(\partial A) = 0$.
- 2. Let $E \subset \mathbb{R}^n$ be measurable and $A \subset \mathbb{R}^n$. Prove that

$$m^*(A \cup E) + m^*(A \cap E) = m^*(A) + m^*(E).$$

- 3. Let $A = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], y \in [0, 1] \setminus \mathbb{Q}\}$. Prove that A is measurable and compute $m_2(A)$.
- 4. Prove that $\{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ or } y \notin \mathbb{Q}\}$ is measurable.
- $5. \ Let$

$$\mathcal{F}_{\sigma} = \{\bigcup_{i=1}^{\infty} F_i \colon F_i \subset \mathbb{R}^n \text{ is closed } \forall i\}$$

and

$$\mathcal{G}_{\delta} = \{\bigcap_{i=1}^{\infty} G_i \colon G_i \subset \mathbb{R}^n \text{ is open } \forall i\}.$$

Prove that $\mathcal{F}_{\sigma} \subset \operatorname{Bor} \mathbb{R}^n$ and $\mathcal{G}_{\delta} \subset \operatorname{Bor} \mathbb{R}^n$, where $\operatorname{Bor} \mathbb{R}^n$ is the family of all Borel subsets of \mathbb{R}^n .

6. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous and $A \subset \mathbb{R}^n$ is closed. Prove that $fA \in \mathcal{F}_{\sigma}$.