Department of Mathematics and Statistics Measure and integral Exercises 2 1-3.2.2017

- True or false (and why)?
 (a) If m*(A) > 0, then A contains a non-empty open set.
 (b) If m*(A) < ∞, then A is bounded.
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (t_1 x_1, t_2 x_2)$, where $t_1, t_2 \in \mathbb{R}$. Prove that

$$m_2^*(fA) = |t_1t_2|m_2^*(A)$$

for all $A \subset \mathbb{R}^2$.

- 3. We say that a function $f \colon \mathbb{R} \to \mathbb{R}$ is *Lipschitz* if there exists a constant L > 0 such that $|f(x) f(y)| \leq L|x y|$ for all $x, y \in \mathbb{R}$. Prove: If $A \subset \mathbb{R}$ is of zero measure and $f \colon \mathbb{R} \to \mathbb{R}$ is Lipschitz, then also the image fA is measurable and m(fA) = 0.
- 4. Prove that a set $E \subset \mathbb{R}^n$ is measurable if and only if

$$m^*(S \cup U) = m^*(S) + m^*(U)$$

for all $S \subset E$ and $U \subset \mathbb{R}^n \setminus E$.

5. Prove that a set $E \subset \mathbb{R}^n$ is measurable if and only if

$$m^*(I) = m^*(I \cap E) + m^*(I \setminus E)$$

for every open *n*-interval *I*. [You can use the fact that $m^*(I) = \ell(I)$ for an *n*-interval *I*.]

6. Let $A \subset \mathbb{R}^n$. (a) Prove that for all $\varepsilon > 0$ there exists an open set $B \subset \mathbb{R}^n$ such that $A \subset B$ and

$$m_n^*(B) \le m_n^*(A) + \varepsilon$$

(b) Prove that there exist open sets $B_k \subset \mathbb{R}^n$ such that

$$A \subset \bigcap_{k=1}^{\infty} B_k$$
 and $m_n^* (\cap_{k=1}^{\infty} B_k) = m_n^*(A).$