Department of Mathematics and Statistics Measure and integral Exercises 1 25-27.1.2017

1. (a) Find $\inf E$ and $\sup E$ if $E = \{\frac{1}{\log x} \in \mathbb{R} : x > 1\}$. (b) Suppose that $\emptyset \neq B \subset A \subset \mathbb{R}$. Prove that

$$\inf A \le \inf B \le \sup B \le \sup A.$$

(c) Let $\emptyset \neq A \subset \mathbb{R}$ and $-2A = \{-2x \colon x \in A\}$. Prove that

$$\inf(-2A) = -2\sup A.$$

- 2. Let $V_1, \ldots, V_k \subset \mathbb{R}^n$ be open and let $F_1, \ldots, F_k \subset \mathbb{R}^n$ be closed subsets of \mathbb{R}^n . Prove that $\bigcap_{j=1}^k V_j$ is open and $\bigcup_{j=1}^k F_j$ is closed. Also find examples of the following phenomena: (a) $V_j \subset \mathbb{R}$ is open for every $j \in \mathbb{N}$, but the intersection $\bigcap_{j=1}^{\infty} V_j$ is not an open set; (b) $F_j \subset \mathbb{R}$ is closed for every $j \in \mathbb{N}$, but the union $\bigcup_{j=1}^{\infty} F_j$ is not a closed set.
- 3. Let I be an uncountable set and $a_i > 0$ for every $i \in I$. Prove that

$$\sum_{i \in I} a_i := \sup_{J \subset I \text{ finite}} \sum_{j \in J} a_j = +\infty.$$

4. Let

$$\mathcal{B} = \{ B^n(x,r) \subset \mathbb{R}^n \colon x = (x_1, \dots, x_n) \in \mathbb{Q}^n, r \in \mathbb{Q}, r > 0 \}.$$

Prove that \mathcal{B} is countable. [In other words, \mathcal{B} is a collection of open balls $B^n(x,r)$ in \mathbb{R}^n such that the coordinates of the centers x are rational numbers and the radii r are positive rational numbers.]

- 5. Let A be the set of all rational numbers on the interval [0, 1], that is $A = [0, 1] \cap \mathbb{Q}$.
 - (a) Let $I_i =]a_i, b_i[, i = 1, ..., k$, be open intervals such that

$$A \subset \bigcup_{i=1}^k I_i.$$

Prove that

$$\sum_{i=1}^{k} (b_i - a_i) \ge 1$$

for every (finite) $k \in \mathbb{N}$.

(b) Prove that, for every $\varepsilon > 0$, there exist open intervals $I_i =]a_i, b_i[, i \in \mathbb{N}, \text{ such that}]$

$$A \subset \bigcup_{i=1}^{\infty} I_i$$
 and $\sum_{i=1}^{\infty} (b_i - a_i) < \varepsilon.$

6. Let $A \subset \mathbb{R}^n$, $y \in \mathbb{R}^n$, and k > 0. Define

 $A+y=\{x+y\colon x\in A\} \quad \text{and} \quad kA=\{kx\colon x\in A\}.$

Prove:

 $m_n^*(A+y) = m_n^*(A)$ and $m_n^*(kA) = k^n m_n^*(A)$.

 $\mathbf{2}$