Measure and integral

Ilkka Holopainen

August 29, 2017

These are lecture notes of the course Measure and integral (Mitta ja integraali).

0 Some background

0.1 Basic operations on sets

Let X be an arbitrary set. The power set of X is the set of all subsets of X,

$$
\mathcal{P}(X)=\{A: A \subset X\},
$$

and any subset $\mathcal{F} \subset \mathcal{P}(X)$ is called a family (or collection) of subsets of X. The union of a family \mathcal{F} is

$$
\bigcup_{A \in \mathcal{F}} A=\{x \in X: x \in A \text { for some } A \in \mathcal{F}\}
$$

and the intersection (of \mathcal{F}) is

$$
\bigcap_{A \in \mathcal{F}} A=\{x \in X: x \in A \text { for all } A \in \mathcal{F}\} .
$$

Let \mathcal{A} be an index set (set of indices) and suppose that for every $\alpha \in \mathcal{A}$ there exists a unique subset $V_{\alpha} \subset X$. (In other words, $\alpha \mapsto V_{\alpha}$ is a mapping $\mathcal{A} \rightarrow \mathcal{P}(X)$.) Then the collection

$$
\mathcal{F}=\left\{V_{\alpha}: \alpha \in \mathcal{A}\right\}
$$

is an indexed family of X.
The union of an indexed family is

$$
\bigcup_{\alpha \in \mathcal{A}} V_{\alpha}=\left\{x \in X: x \in V_{\alpha} \text { for some } \alpha \in \mathcal{A}\right\}
$$

and the intersection of an indexed family is

$$
\bigcap_{\alpha \in \mathcal{A}} V_{\alpha}=\left\{x \in X: x \in V_{\alpha} \underline{\text { for all }} \alpha \in \mathcal{A}\right\} .
$$

We denote also

$$
\bigcup_{\alpha} V_{\alpha} \text { and } \bigcap_{\alpha} V_{\alpha}, \quad \text { if } \mathcal{A} \text { is clear from the context. }
$$

Example. 1. Let $\mathcal{F} \subset \mathcal{P}(X)$. We can interpret \mathcal{F} as an indexed family by using \mathcal{F} as the index set. That is, if $\alpha \in \mathcal{F}$ (thus α is a subset of X), we write $V_{\alpha}=\alpha$. Then $\mathcal{F}=\left\{V_{\alpha}: \alpha \in \mathcal{F}\right\}$.
2.

$$
X=\bigcup_{x \in X}\{x\}, \quad\{x\}=\text { a singleton. }
$$

If the index set is $\mathbb{N}=\{1,2,3, \ldots\}$, we denote

$$
\bigcup_{n \in \mathbb{N}} V_{n} \quad \text { or } \bigcup_{n}^{\infty} V_{n} \quad \text { or } \bigcup_{n} V_{n},
$$

and

$$
\bigcap_{n \in \mathbb{N}} V_{n} \text { or } \bigcap_{n}^{\infty} V_{n} \text { or } \bigcap_{n} V_{n} \text {. }
$$

Sequences (of sets) are denoted by $\left(V_{n}\right),\left(V_{n}\right)_{n=1}^{\infty},\left(V_{n}\right)_{n \in \mathbb{N}}$, or V_{1}, V_{2}, \ldots
The difference of sets $A, B \subset X$ is

$$
A \backslash B=\{x \in X: x \in A \text { and } x \notin B\}
$$

The complement of a set $B \subset X$ (with respect to X) is

$$
B^{c}=X \backslash B
$$

Remark.

$$
A \backslash B=A \cap B^{c}
$$

Theorem 0.2. Let $\left\{V_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of X. Then the following de Morgan's laws hold:

$$
\begin{equation*}
\left(\bigcup_{\alpha} V_{\alpha}\right)^{c}=\bigcap_{\alpha} V_{\alpha}^{c} \tag{0.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\bigcap_{\alpha} V_{\alpha}\right)^{c}=\bigcup_{\alpha} V_{\alpha}^{c} \tag{0.4}
\end{equation*}
$$

Let $B \subset X$. Then the following distributive laws for union and for intersection hold:

$$
\begin{equation*}
B \cap\left(\bigcup_{\alpha} V_{\alpha}\right)=\bigcup_{\alpha}\left(B \cap V_{\alpha}\right) \tag{0.5}
\end{equation*}
$$

and

$$
\begin{equation*}
B \cup\left(\bigcap_{\alpha} V_{\alpha}\right)=\bigcap_{\alpha}\left(B \cup V_{\alpha}\right) \tag{0.6}
\end{equation*}
$$

Proof. (0.3):

$$
x \in\left(\bigcup_{\alpha} V_{\alpha}\right)^{c} \Longleftrightarrow x \notin \bigcup_{\alpha} V_{\alpha} \Longleftrightarrow \forall \alpha: x \notin V_{\alpha} \Longleftrightarrow \forall \alpha: x \in V_{\alpha}^{c} \Longleftrightarrow x \in \bigcap_{\alpha} V_{\alpha}^{c}
$$

(0.4): Similarly.
(0.5):

$$
\begin{aligned}
x \in B \cap\left(\bigcup_{\alpha} V_{\alpha}\right) & \Longleftrightarrow x \in B \text { and } x \in \bigcup_{\alpha} V_{\alpha} \Longleftrightarrow x \in B \text { and } x \in V_{\alpha} \text { for some } \alpha \in \mathcal{A} \\
& \Longleftrightarrow x \in B \cap V_{\alpha} \text { for some } \alpha \in \mathcal{A} \Longleftrightarrow x \in \bigcup_{\alpha}\left(B \cap V_{\alpha}\right) .
\end{aligned}
$$

(0.6): Similarly.

The images and preimages of the union/intersection of a family.

Let X and Y be non-empty sets and $f: X \rightarrow Y$ a mapping.
The image of a set $A \subset X$ under the mapping f is

$$
f(A)=\{f(x): x \in A\} . \quad(\subset Y)
$$

We usually abbreviate $f A$.
The preimage of a set $B \subset Y$ under the mapping f is

$$
f^{-1}(B)=\{x \in X: f(x) \in B\} .
$$

We also abbreviate $f^{-1} B$ and denote

$$
f^{-1}(y)=f^{-1}(\{y\}),
$$

if $y \in Y$. [Note: f need not have an inverse mapping.]
Theorem 0.7. Let $f: X \rightarrow Y$ be a mapping and let $\left\{V_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of X, and let $\left\{W_{\beta}: \beta \in \mathcal{B}\right\}$ be a family of Y. Then

$$
\begin{gather*}
f\left(\bigcup_{\alpha} V_{\alpha}\right)=\bigcup_{\alpha} f V_{\alpha} \tag{0.8}\\
f^{-1}\left(\bigcup_{\beta} W_{\beta}\right)=\bigcup_{\beta} f^{-1} W_{\beta} \tag{0.9}\\
f^{-1}\left(\bigcap_{\beta} W_{\beta}\right)=\bigcap_{\beta} f^{-1} W_{\beta} . \tag{0.10}
\end{gather*}
$$

Proof. (0.8):

$$
\begin{aligned}
y \in f\left(\bigcup_{\alpha} V_{\alpha}\right) & \Longleftrightarrow y=f(x) \text { and } x \in \bigcup_{\alpha} V_{\alpha} \Longleftrightarrow y=f(x) \text { and } x \in V_{\alpha} \text { for some } \alpha \in \mathcal{A} \\
& \Longleftrightarrow y \in f V_{\alpha} \text { for some } \alpha \in \mathcal{A} \Longleftrightarrow y \in \bigcup_{\alpha} f V_{\alpha} .
\end{aligned}
$$

(0.9) and (0.10): Similarly.

Remark. It is always true that

$$
f\left(\bigcap_{\alpha} V_{\alpha}\right) \subset \bigcap_{\alpha} f V_{\alpha},
$$

but the inclusion can be strict. The equality $f\left(\cap_{\alpha} V_{\alpha}\right)=\cap_{\alpha} f V_{\alpha}$ holds, for example, if f os an injection.

Countable and uncountable sets

Countability is a very important notion is measure theory!
Definition. A set A is countable if $A=\emptyset$ or there exists an injection $f: A \rightarrow \mathbb{N}(\Longleftrightarrow \exists \mathrm{a}$ surjection $g: \mathbb{N} \rightarrow A)$.

A set A is uncountable if A is not countable.
Remark. 1. A countable $\Longleftrightarrow A$ finite äärellinen (including \emptyset) or countably infinite (when there exists a bijection $f: A \rightarrow \mathbb{N})$.
2. A countable $\Longleftrightarrow A=\left\{x_{n}: n \in \mathbb{N}\right\}$ (repetition allowed, so that A can be finite).
3. A countable, $B \subset A \Rightarrow B$ countable.

Theorem 0.11. If the sets A_{n} are countable $\forall n \in \mathbb{N}$, then

$$
\bigcup_{n \in \mathbb{N}} A_{n} \text { is countable. }
$$

("countable union of countable sets is countable".)
Proof. We may assume that $A_{n} \neq \emptyset \forall n \in \mathbb{N}$. Since A_{n} is countable, we may write $A_{n}=$ $\left\{x_{m}(n): m \in \mathbb{N}\right\}$. Define a mapping

$$
g: \mathbb{N} \times \mathbb{N} \rightarrow \cup_{n} A_{n}, \quad g(n, m)=x_{m}(n)
$$

Then g is a surjection $\mathbb{N} \times \mathbb{N} \rightarrow \cup_{n} A_{n}$. Hence it suffices to find a surjection $h: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, because then

$$
g \circ h: \mathbb{N} \rightarrow \bigcup_{n \in \mathbb{N}} A_{n}
$$

is surjective and therefore $\cup_{n} A_{n}$ is countable. An example of a surjection $h: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ is:

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
$=h(1)$	$=h(3)$	$=h(6)$	$=h(10)$	$=h(15)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	
$=h(2)$	$=h(5)$	$=h(9)$	$=h(14)$	
$(3,1)$	$(3,2)$	$(3,3)$		
$=h(4)$	$=h(8)$	$=h(13)$		
$(4,1)$	$(4,2)$			
$=h(7)$	$=h(12)$			
$(5,1)$				
$=h(11)$				

Corollary. The set of all rational numbers

$$
\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, n, m \in \mathbb{Z}, n \neq 0\right\}
$$

is countable. Reason: The set

$$
A_{k}=\left\{\frac{m}{n}|n, m \in \mathbb{Z}, n \neq 0,|m| \leq k,|n| \leq k\}\right.
$$

is finite (and hence countable) $\forall k \in \mathbb{N}$. Theorem $0.11 \Rightarrow \mathbb{Q}=\cup_{k \in \mathbb{N}} A_{k}$ countable.
Example. (Uncountable set). The interval $[0,1]$ (and hence \mathbb{R}) is uncountable.
Idea: $x \in[0,1] \Rightarrow x$ has a decimal expansion

$$
x=0, a_{1} a_{2} a_{3} \ldots,
$$

where $a_{j} \in\{0,1,2, \ldots, 9\}$.
Contrapositive: $[0,1]$ is countable, so $[0,1]=\left\{x_{n}: n \in \mathbb{N}\right\}$. Points x_{n} have decimal expansions

$$
\begin{aligned}
x_{1} & =0, a_{1}^{(1)} a_{2}^{(1)} a_{3}^{(1)} \ldots \\
x_{2} & =0, a_{1}^{(2)} a_{2}^{(2)} a_{3}^{(2)} \ldots \\
x_{3} & =0, a_{1}^{(3)} a_{2}^{(3)} a_{3}^{(3)} \ldots \\
& \vdots \\
x_{n} & =0, a_{1}^{(n)} a_{2}^{(n)} a_{3}^{(n)} \ldots a_{n}^{(n)} \cdots
\end{aligned}
$$

On the "diagonal" there is a sequence $a_{1}^{(1)}, a_{2}^{(2)}, a_{3}^{(3)}, \ldots, a_{n}^{(n)}, \ldots$, where $a_{n}^{(n)}$ is the nth decimal of x_{n}. Let $x \in[0,1]$ be defined by $x=0, b_{1} b_{2} b_{3} \ldots$, where

$$
b_{n}= \begin{cases}a_{n}^{(n)}+2, & \text { if } a_{n}^{(n)} \in\{0,1,2, \ldots, 7\} \tag{0.12}\\ a_{n}^{(n)}-2, & \text { if } a_{n}^{(n)} \in\{8,9\}\end{cases}
$$

The nth decimal of x satisfies $\left|b_{n}-a_{n}^{n}\right|=2 \forall n \in \mathbb{N}$, and therefore $x \neq x_{n} \forall n \in \mathbb{N}$. This is a contradiction, because $[0,1]=\left\{x_{n}: n \in \mathbb{N}\right\}$. Hence $[0,1]$ is uncountable.
[Note: A decimal expansion need not be unique: for instance, $0,5999 \ldots=0,6000 \ldots$ However, this makes no harm, because in (0.12) $b_{n}=a_{n}^{(n)} \pm 2$.]

Infinite sums.

Let $\mathcal{A} \neq \emptyset$ be an arbitrary index set and $a_{\alpha} \geq 0 \forall \alpha \in \mathcal{A}$. Question: What does the sum

$$
\sum_{\alpha \in \mathcal{A}} a_{\alpha}
$$

mean?

Define

$$
\sum_{\alpha \in \mathcal{A}} a_{\alpha}=\sup \left\{\sum_{\alpha \in \mathcal{A}_{0}} a_{\alpha} \mid \mathcal{A}_{0} \subset \mathcal{A} \text { finite }\right\}
$$

We will return to this a bit later.

0.13 Euclidean space \mathbb{R}^{n}

$$
\mathbb{R}^{n}=\overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{n \text { times }} \quad \text { Cartesian product }
$$

The elements are called points or vectors.

$$
x \in \mathbb{R}^{n} \Longleftrightarrow x=\left(x_{1}, \ldots, x_{n}\right), x_{j} \in \mathbb{R}, j=1, \ldots, n
$$

Algebraic structure.

The sum of points $x, y \in \mathbb{R}^{n}$ is

$$
x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{x}\right) \in \mathbb{R}^{n} .
$$

The product of a real number $\lambda \in \mathbb{R}$ and a point $x \in \mathbb{R}^{n}$ is

$$
\lambda x=\left(\lambda x_{1}, \ldots, \lambda x_{n}\right) \in \mathbb{R}^{n} .
$$

Zero vector

$$
0=\overline{0}=(0, \ldots, 0) .
$$

The inverse element (point) of $x \in \mathbb{R}^{n}$ is

$$
-x=(-1) x=\left(-x_{1}, \ldots,-x_{n}\right) .
$$

The difference of $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ is

$$
x-y=x+(-y) .
$$

In \mathbb{R}^{n} the addition and multiplication by a real number satisfy the axioms of a vector space, for example

$$
\begin{gathered}
x+y=y+x, \quad x+0=0+x=x \\
\lambda(x+y)=\lambda x+\lambda y, \quad(\lambda+\mu) x=\lambda x+\mu x \quad \text { etc } \\
\forall x, y \in \mathbb{R}^{n}, \lambda, \mu \in \mathbb{R} .
\end{gathered}
$$

The inner product of $x, y \in \mathbb{R}^{n}$ is

$$
x \cdot y=\sum_{i=1}^{n} x_{i} y_{i} \in \mathbb{R}
$$

Denote

$$
|x|=\sqrt{x \cdot x}=\left(\sum_{i=1}^{n} x_{i} x_{i}\right)^{1 / 2} \quad \text { norm of } x .
$$

The Euclidean distance in \mathbb{R}^{n}.
The distance between $x, y \in \mathbb{R}^{n}$ is

$$
|x-y|=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}
$$

Often we write $d(x, y)=|x-y|$. Then d is a metric in \mathbb{R}^{n}, i.e. the mapping $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies the axioms of a metric:

$$
\begin{aligned}
d(x, y) & \geq 0 \quad \forall x, y \in \mathbb{R}^{n} \\
d(x, y) & =0 \Longleftrightarrow x=y \\
d(x, y) & =d(y, x) \quad \forall x, y \in \mathbb{R}^{n} \\
d(x, y) & \leq d(x, z)+d(z, y) \quad \forall x, y, z \in \mathbb{R}^{n} \quad \text { (triangle inequality, } \triangle \text {-ie) }
\end{aligned}
$$

Open sets and closed sets in \mathbb{R}^{n}.
The Euclidean metric d determines open and closed sets of \mathbb{R}^{n} (and hence the topology of \mathbb{R}^{n}) as follows:

Let $x \in \mathbb{R}^{n}$ and $r>0$. The set

$$
B(x, r)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\}
$$

is an open ball with the center x and radius r and

$$
S(x, r)=\left\{y \in \mathbb{R}^{n}:|y-x|=r\right\}
$$

is the sphere (centered at x and with radius r. Similarly,

$$
\bar{B}(x, r)=\left\{y \in \mathbb{R}^{n}:|y-x| \leq r\right\}
$$

is a closed ball (centered at x with radius r).
A set $V \subset \mathbb{R}^{n}$ is open if $\forall x \in V \exists r=r(x)>0$ such that $B(x, r) \subset V$.
A set $V \subset \mathbb{R}^{n}$ is closed is $\mathbb{R}^{n} \backslash V$ is open.

Example. 1. $B(x, r)$ is open $\forall x \in \mathbb{R}^{n}, r>0$ (\triangle-ie, see the picture above).
2. A closed ball $\bar{B}(x, r)$ is a closed set.
3. \mathbb{R}^{n} and \emptyset are both open and closed.
4. A half open interval, e.g. $[0,1)$, is neither open nor closed.

Remark. The closure of a set $A \subset \mathbb{R}^{n}$ is

$$
\bar{A}=\left\{x \in \mathbb{R}^{n}: x \in A \text { or } x \text { is an accumulation (or a cluster) point of } A\right\}
$$

Recall that $x \in \mathbb{R}^{n}$ is an accumulation point of $A \subset \mathbb{R}^{n}$ if $\forall r>0 B(x, r) \cap(A \backslash\{x\}) \neq \emptyset$. In \mathbb{R}^{n} it holds that $\bar{B}(x, r)=\overline{B(x, r)}$.

Remark. If (X, d) is a metric space, i.e. $d: X \times X \rightarrow \mathbb{R}$ satisfies the axioms of a metric, we can define open and closed sets of X by using th emetric d as in the case of \mathbb{R}^{n} by replacing $|y-x|$ with the metric $d(x, y)$.

The following result holds in general:

Theorem 0.14.

$$
\begin{equation*}
V_{\alpha} \subset \mathbb{R}^{n} \text { open } \forall \alpha \in \mathcal{A} \text { (arbitrary index set) } \Rightarrow \bigcup_{\alpha \in \mathcal{A}} V_{\alpha} \text { open; } \tag{0.15}
\end{equation*}
$$

$$
\begin{equation*}
V_{\alpha} \subset \mathbb{R}^{n} \text { closed } \forall \alpha \in \mathcal{A} \Rightarrow \bigcap_{\alpha \in \mathcal{A}} V_{\alpha} \text { closed } \tag{0.16}
\end{equation*}
$$

$$
\begin{equation*}
V_{1}, \ldots, V_{k} \subset \mathbb{R}^{n} \text { open } \Rightarrow \bigcap_{j=1}^{k} V_{j} \text { open } \tag{0.17}
\end{equation*}
$$

$$
\begin{equation*}
V_{1}, \ldots, V_{k} \subset \mathbb{R}^{n} \text { closed } \Rightarrow \bigcup_{j=1}^{k} V_{j} \text { closed } \tag{0.18}
\end{equation*}
$$

Proof. (0.15):

$$
\begin{gathered}
x \in \bigcup_{\alpha \in \mathcal{A}} V_{\alpha} \Rightarrow \exists \alpha_{0} \in \mathcal{A} \text { s.t. } x \in V_{\alpha_{0}} \\
V_{\alpha_{0}} \text { open } \Rightarrow \exists \text { open ball } B(x, r) \subset V_{\alpha_{0}} \subset \bigcup_{\alpha \in \mathcal{A}} V_{\alpha} .
\end{gathered}
$$

(0.16):

$$
\begin{gathered}
V_{\alpha} \\
\stackrel{(0.15)}{\Rightarrow} \bigcup_{\alpha} V_{\alpha}^{c} \stackrel{\text { de Morgan }}{=}\left(\bigcap_{\alpha} V_{\alpha}\right)^{c} \text { open } \\
\Rightarrow \bigcap_{\alpha} V_{\alpha} \text { closed. }
\end{gathered}
$$

(0.17) and (0.18): (Exerc.).

Remark.

$$
\begin{gathered}
V_{j} \text { open } \forall j \in \mathbb{N} \nRightarrow \bigcap_{j=1}^{\infty} V_{j} \text { open, } \\
V_{j} \text { closed } \forall j \in \mathbb{N} \nRightarrow \bigcup_{j=1}^{\infty} V_{j} \text { closed. } \quad \text { (Exerc.) }
\end{gathered}
$$

1 Lebesgue measure in \mathbb{R}^{n}

1.1 Introduction

A geometric starting point: If $I=[a, b] \subset \mathbb{R}$ is a bounded interval, its length is

$$
\ell(I)=b-a .
$$

(Similarly if I is an open or half open interval.)
A set $I \subset \mathbb{R}^{n}$ is an n-interval if it is of the form

$$
I=I_{1} \times \cdots \times I_{n}
$$

where each $I_{j} \subset \mathbb{R}$ is an interval (either open, closed, or half open).

An n-interval I is an open (respectively closed) n-interval if each I_{j} is open (resp. closed).
Let I_{j} has the end points $a_{j}, b_{j} ; a_{j}<b_{j}$. Then the geometric measure of I is

$$
\ell(I)=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right) \cdots\left(b_{n}-a_{n}\right)=\prod_{j=1}^{n}\left(b_{j}-a_{j}\right)
$$

($n=1$ length, $n=2$ area, $n=3$ volume). Define $\ell(\emptyset)=0$.
Our goal would be to define a "measure" as a mapping

$$
m_{n}: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]
$$

such that it satisfies the conditions:
(1) $m_{n}(E)$ is defined $\forall E \subset \mathbb{R}^{n}$ and $m_{n}(E) \geq 0$.
(2) If I is an n-interval, then $m_{n}(I)=\ell(I)$.
(3) If $\left(E_{k}\right)$ is a sequence of disjoint subsets of \mathbb{R}^{n} (i.e. $E_{j} \cap E_{k}=\emptyset$ if $j \neq k$), then

$$
m_{n}\left(\cup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} m_{n}\left(E_{k}\right) \quad \text { countably additivity }
$$

(4) m_{n} is translation invariant, i.e.

$$
m_{n}(E+x)=m_{n}(E)
$$

where $E \subset \mathbb{R}^{n}, x \in \mathbb{R}^{n}$, and $E+x=\{y+x \mid y \in E\}$.
It turns out that there exists no such mapping that would satisfy all the conditions (1) - (4) simultaneously. In the case of the (n-dimensional) Lebesgue measure m_{n} we drop the condition (1). Hence

$$
m_{n}: \operatorname{Leb} \mathbb{R}^{n} \rightarrow[0,+\infty]
$$

will be a mapping that satisfies the conditions (2), (3) and (4), where

$$
\text { Leb } \mathbb{R}^{n} \subsetneq \mathcal{P}\left(\mathbb{R}^{n}\right)
$$

is the family of Lebesgue measurable sets. The family Leb \mathbb{R}^{n} contains, for instance, all open and closed subsets of \mathbb{R}^{n}.

1.2 The Lebesgue outer measure in \mathbb{R}^{n}

Convention.

$$
\begin{aligned}
& a+\infty=\infty+a=\infty, \quad a \neq-\infty \\
& a-\infty=-\infty+a=-\infty, \quad a \neq \infty \\
& \infty-\infty, \quad-\infty+\infty \text { not defined } \\
& -(\infty)=-\infty, \quad-(-\infty)=\infty \\
& \begin{array}{r}
\infty \cdot a=a \cdot \infty= \begin{cases}\infty, & a>0 \\
-\infty, & a<0 \\
0, & a=0\end{cases} \\
(-\infty) a=a(-\infty)= \begin{cases}-\infty, & a>0 \\
+\infty, & a<0 \\
0, & a=0\end{cases}
\end{array} \\
& \infty \cdot \infty=(-\infty)(-\infty)=\infty \\
& (-\infty) \infty=\infty(-\infty)=-\infty \\
& \frac{a}{0}= \begin{cases}\infty, & a>0 \\
-\infty, & a<0 \\
\text { not defined }, & a=0\end{cases} \\
& \frac{a}{\infty}=\frac{a}{-\infty}=0, \quad a \in \mathbb{R} \\
& \frac{ \pm \infty}{ \pm \infty} \text { not defined }
\end{aligned}
$$

Recall: If $\left(a_{j}\right)_{j \in \mathbb{N}}$ is a sequence such that $a_{j} \geq 0 \forall j$, then either

$$
\sum_{j=1}^{\infty} a_{j}=\lim _{k \rightarrow \infty} \sum_{j=1}^{k} a_{j} \in \mathbb{R} \quad \text { or } \quad \sum_{j=1}^{\infty} a_{j}=+\infty
$$

Reason: partial sums $\sum_{j=1}^{k} a_{j}$ form an increasing sequence.
Let $A \subset \mathbb{R}^{n}$. Consider countable open covers of A (possibly finite)

$$
\mathcal{F}=\left\{I_{1}, I_{2}, \ldots\right\}
$$

where each $I_{k} \subset \mathbb{R}^{n}$ is a bounded open n-interval (or \emptyset) and

$$
A \subset \bigcup_{k=1}^{\infty} I_{k}
$$

Then we say that \mathcal{F} is a Lebesgue cover of A. We form a series

$$
S(\mathcal{F})=\sum_{k=1}^{\infty} \ell\left(I_{k}\right), \quad 0<S(\mathcal{F}) \leq+\infty
$$

Definition. The n-dimensional (Lebesgue) outer measure of A is

$$
m_{n}^{*}(A)=\inf \{S(\mathcal{F}): \mathcal{F} \text { is a Lebesgue cover of } A\}
$$

(Later we will prove that closed n-intervals would work as well.)
Remark. 1. Denote $J_{k}=\left\{x \in \mathbb{R}^{n}:\left|x_{j}\right|<k \forall j\right\}$ (open n-interval). Clearly

$$
\mathbb{R}^{n}=\bigcup_{k=1}^{\infty} J_{k}
$$

and therefore always there exist open covers $\cup_{k=1}^{\infty} I_{k} \supset A$ (and hence inf exists).
2. $I_{k} \subset \mathbb{R}^{n}$ open n-interval $\Rightarrow 0 \leq \ell\left(I_{k}\right)<\infty \Rightarrow$ the sum is well-defined and

$$
0 \leq \sum_{k=1}^{\infty} \ell\left(I_{k}\right) \leq+\infty
$$

3. The outer measure $m_{n}(A)$ depends (of course) on the dimension n. If n is clear from the context, we abbreviate $m^{*}(A)=m_{n}^{*}(A)$.
4. It follows directly from the definition that $\forall \varepsilon>0$ there exists a Lebesgue cover \mathcal{F} of A (usually depending on ε) such that

$$
S(\mathcal{F}) \leq m^{*}(A)+\varepsilon
$$

(We allow $m^{*}(A)=+\infty$.) Note that it is usually not possible to find a Lebesgue cover \mathcal{F} of A for which $m_{n}^{*}(A)=S(\mathcal{F})$.
5. Thus $A \mapsto m^{*}(A)$ is a mapping $\mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow[0, \infty]$, in particular, m^{*} is defined in the whole $\mathcal{P}\left(\mathbb{R}^{n}\right)$.

Example. 1. Let $n=2$ and let $A=\{(x, 0): a \leq x \leq b\} \subset \mathbb{R}^{2}$ (a line segment in the plane). Claim: $m_{2}^{*}(A)=0$.
Proof: Let $\varepsilon>0$ and $\left.I_{\varepsilon}=\right] a-\varepsilon, b+\varepsilon[\times]-\varepsilon, \varepsilon\left[\subset \mathbb{R}^{2}\right.$ an open 2-interval.

$$
A \subset I_{\varepsilon} \Rightarrow 0 \leq m_{2}^{*}(A) \leq \ell\left(I_{\varepsilon}\right)=2 \varepsilon(b-a+2 \varepsilon) \xrightarrow{\varepsilon \rightarrow 0} 0,
$$

hence $m_{2}^{*}(A)=0$.
2. Let $n=1$. Consider the set of rational numbers $\mathbb{Q} \subset \mathbb{R}$.

Claim: $m_{1}^{*}(\mathbb{Q})=0$.
$\underline{\text { Proof }}$ Since \mathbb{Q} is countable, we may write $\mathbb{Q}=\left\{q_{j}: j \in \mathbb{N}\right\}$. Let $\varepsilon>0$ be arbitrary. For each $j \in \mathbb{N}$ let

$$
\left.I_{j}=\right] q_{j}-\frac{\varepsilon}{2^{j+1}}, q_{j}+\frac{\varepsilon}{2^{j+1}}[\subset \mathbb{R}
$$

be an open interval. Its length is $\ell\left(I_{j}\right)=2 \varepsilon / 2^{j+1}=\varepsilon / 2^{j}$.

$$
\begin{gathered}
q_{j} \in I_{j} \quad \forall j \in \mathbb{N} \Rightarrow \mathbb{Q} \subset \bigcup_{j} I_{j} \Rightarrow \\
0 \leq m_{1}^{*}(\mathbb{Q}) \leq \sum_{j=1}^{\infty} \ell\left(I_{j}\right)=\sum_{j=1}^{\infty} \frac{\varepsilon}{2^{j}}=\varepsilon \sum_{j=1}^{\infty} \frac{1}{2^{j}}=\varepsilon \xrightarrow{\varepsilon \rightarrow 0} 0
\end{gathered}
$$

hence $m_{1}^{*}(\mathbb{Q})=0$.
3. Similarly, $A \subset \mathbb{R}^{n}$ countable $\Rightarrow m_{n}^{*}(A)=0$.
4. Let $A \subset \mathbb{R}^{n}$ be a bounded set, that is $\exists R>0$ such that $A \subset B(0, R)$. Then $A \subset I$, where

$$
I=]-R, R[\stackrel{n \text { times }}{\times \cdots \times]}-R, R[\quad \text { open } n \text {-interval. }
$$

We get an estimate

$$
m^{*}(A) \leq \ell(I)=(2 R)^{n}
$$

Basic properties of the (Lebesgue) outer measure.
Theorem 1.3. (1) $m_{n}^{*}(\emptyset)=0$;
(2) "monotonicity": $A \subset B \Rightarrow m_{n}^{*}(A) \leq m_{n}^{*}(B)$;
(3) "subadditivity": $A_{1}, A_{2}, \ldots \subset \mathbb{R}^{n} \Rightarrow$

$$
m_{n}^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leq \sum_{j=1}^{\infty} m_{n}^{*}\left(A_{j}\right)
$$

Remark. (3) holds also for finite unions $\cup_{j=1}^{k}\left(A_{j}\right)$ (choose $A_{k+1}=\cdots=\emptyset$).
Proof. (1): Clear.
(2): Let \mathcal{F} be a Lebesgue cover of B.

$$
A \subset B \quad \Rightarrow \mathcal{F} \text { is also a Lebesgue cover of } A \quad \begin{aligned}
& \text { definition }
\end{aligned} m_{n}^{*}(A) \leq S(\mathcal{F}) \text {. }
$$

Take the inf over all Lebesgue covers of $B \quad \Rightarrow \quad m_{n}^{*}(A) \leq m_{n}^{*}(B)$.
(3): Denote $A=\cup_{j} A_{j}$. Let $\varepsilon>0$. For each j choose a Lebesgue cover $\mathcal{F}_{j}=\left\{I_{j 1}, I_{j 2} \ldots\right\}$ of A_{j} such that

$$
S\left(\mathcal{F}_{j}\right) \leq m_{n}^{*}\left(A_{j}\right)+\varepsilon / 2^{j}
$$

Now $\mathcal{F}=\bigcup_{j} \mathcal{F}_{j}=\left\{I_{j k}: j \in \mathbb{N}, k \in \mathbb{N}\right\}$ is a Lebesgue cover of A, hence (by definition)

$$
m_{n}^{*}(A) \leq S(\mathcal{F})=\sum_{j=1}^{\infty} S\left(\mathcal{F}_{j}\right) \leq \sum_{j=1}^{\infty} m_{n}^{*}\left(A_{j}\right)+\sum_{j=1}^{\infty} \varepsilon / 2^{j}=\sum_{j=1}^{\infty} m_{n}^{*}\left(A_{j}\right)+\varepsilon .
$$

Letting $\varepsilon \rightarrow 0$ we get the claim.

Remark. Above we need some facts on "summing" (more precisely, why $S(\mathcal{F})=\sum_{j=1}^{\infty} S\left(\mathcal{F}_{j}\right)$)? See Lemma 1.7 and 1.8 below.

Theorem 1.4. Let $A \subset \mathbb{R}^{n}$. Then

$$
\begin{equation*}
m_{n}^{*}(A+x)=m_{n}^{*}(A) \tag{1.5}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$, where $A+x=\{y+x: y \in A\}$;

$$
\begin{equation*}
m_{n}^{*}(t A)=t^{n} m_{n}^{*}(A) \tag{1.6}
\end{equation*}
$$

whenever $t>0$ and $t A=\{t y: y \in A\}$.
Proof (Exerc.)
On summing. Let I be an (index) set and $a_{i} \geq 0 \forall i \in I$. If $J \subset I$ is finite, we denote

$$
S_{J}=\sum_{i \in J} a_{i}, \quad S_{\emptyset}=0 .
$$

Definition.

$$
\sum_{i \in I} a_{i}=\sup \left\{S_{J}: J \subset I \text { finite }\right\} .
$$

Lemma 1.7.

$$
\sum_{i \in \mathbb{N}} a_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i} .
$$

That is, this "new" definition coincide with the usual one (for countable sums).
Proof Denote $J_{n}=\{1, \ldots, n\}, \quad S=\sum_{i \in \mathbb{N}} a_{i} \quad\left(=\sup \left\{S_{J}: J \subset \mathbb{N}\right.\right.$ finite $\left.\}\right)$.

$$
\begin{gathered}
\left(S_{J_{n}}\right) \text { increasing sequence } \Rightarrow \exists \lim _{n \rightarrow \infty} S_{J_{n}}=S^{\prime} \\
S_{J_{n}} \leq S \Rightarrow S^{\prime} \leq S
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
J \subset \mathbb{N} \text { finite } \quad \Rightarrow \quad \exists n \in \mathbb{N} \text { s.t. } J \subset J_{n} \\
\Rightarrow \quad S_{J} \leq S_{J_{n}} \leq S^{\prime} \\
\Rightarrow \quad S \leq S^{\prime} \quad(\text { taking sup over } \forall J)
\end{gathered}
$$

Next both I and J are arbitrary index sets (i.e. they may be uncountable). (In addition, we abbreviate $a_{i j}=a_{(i, j)}$.)

Lemma 1.8.

$$
\sum_{(i, j) \in I \times J} a_{i j}=\sum_{i \in I} \sum_{j \in J} a_{i j}=\sum_{j \in J} \sum_{i \in I} a_{i j}
$$

Proof Denote by $S_{\text {vas }}$ the sum on the left hand side, by $S_{\text {kes }}$ the sum in the middle, and by $S_{\text {oik }}$ the sum on the right hand side.
(a): If $\mathcal{A} \subset I \times J$ is finite, then \exists finite $I^{\prime} \subset I, J^{\prime} \subset J$ s.t. $\mathcal{A} \subset I^{\prime} \times J^{\prime}$

$$
\begin{gathered}
\Rightarrow \quad S_{\mathcal{A}} \leq S_{I^{\prime} \times J^{\prime}} \stackrel{(*)}{=} \sum_{i \in I^{\prime}} \sum_{j \in J^{\prime}} a_{i j} \leq \sum_{i \in I^{\prime}} \sum_{j \in J} a_{i j} \leq S_{\mathrm{kes}} \\
\left.\Rightarrow \quad S_{\mathrm{vas}} \leq S_{\mathrm{kes}} \quad \text { (taking sup over } \forall \mathcal{A}\right)
\end{gathered}
$$

[(*): there is only finitely many terms in $S_{I^{\prime} \times J^{\prime}}$, so the order of summing does not matter.]
(b): Let $I^{\prime} \subset I$ be finite and $J_{i}^{\prime} \subset J$ be finite $\forall i \in I^{\prime}$. Denote

$$
\mathcal{A}=\left\{(i, j): i \in I^{\prime}, j \in J_{i}^{\prime}\right\}
$$

Then

$$
S_{\mathrm{vas}} \geq S_{\mathcal{A}}=\sum_{i \in I^{\prime}} \sum_{j \in J_{i}^{\prime}} a_{i j}
$$

Take $\left(\forall i \in I^{\prime}\right)$ the sup over finite $J_{i}^{\prime} \subset J$

$$
\begin{gathered}
\qquad S_{\mathrm{vas}} \geq \sum_{i \in I^{\prime}} \sum_{j \in J} a_{i j} \\
\text { sup over finite } I^{\prime} \subset I \quad \Rightarrow \quad S_{\mathrm{vas}} \geq S_{\mathrm{kes}}
\end{gathered}
$$

Similarly, $S_{\text {vas }}=S_{\text {oik }}$.
Corollary 1.9.

$$
\sum_{(i, j) \in \mathbb{N} \times \mathbb{N}} a_{i j}=\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} a_{i j}=\sum_{j \in \mathbb{N}} \sum_{i \in \mathbb{N}} a_{i j}
$$

Remark. The subadditivity does not (in general) hold in the form

$$
\begin{equation*}
m_{n}^{*}\left(\bigcup_{i \in I} A_{i}\right) \leq \sum_{i \in I} m_{n}^{*}\left(A_{i}\right) \tag{1.10}
\end{equation*}
$$

where $A_{i} \subset \mathbb{R}^{n}, i \in I$, and I is an uncountable index set. Reason:

$$
\mathbb{R}^{n}=\bigcup_{x \in \mathbb{R}^{n}}\{x\}, \quad m_{n}^{*}(\{x\})=0 \forall x \in \mathbb{R}^{n}
$$

If (1.10) would hold, then

$$
0 \leq m_{n}^{*}\left(\mathbb{R}^{n}\right)=m_{n}^{*}\left(\bigcup_{x \in \mathbb{R}^{n}}\{x\}\right) \stackrel{(1.10)}{\leq} \sum_{x \in \mathbb{R}^{n}} m_{n}^{*}(\{x\})=0 .
$$

On the other hand, we will prove later that $m_{n}^{*}\left(\mathbb{R}^{n}\right)=+\infty$. This is a contradiction, so (1.10) does not hold!

1.11 (Lebesgue)measurable sets

We will define the (Lebesgue) measurable sets of \mathbb{R}^{n}, denoted by Leb \mathbb{R}^{n}, by using so-called Carathéodory's condition.

Recall the subadditivity (Theorem 1.3 (3)): $\quad A, B \subset \mathbb{R}^{n} \Rightarrow$

$$
m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B) .
$$

Later we will prove that $\exists A, B \subset \mathbb{R}^{n}$ s.t. $A \cap B=\emptyset$, but

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

In other words, the Lebesgue outer measure m^{*} is not countable additive. We want to get rid of this unsatisfactory behaviour and therefore we "throw away" certain sets.

Let $E \subset \mathbb{R}^{n}$ be given and let $A \subset \mathbb{R}^{n}$ be a "test set":

$$
\begin{gathered}
A=(A \cap E) \cup(A \backslash E) \quad \text { disjoint union } \\
m^{*} \text { subadditive } \Rightarrow m^{*}(A) \leq m^{*}(A \cap E)+m^{*}(A \backslash E) .
\end{gathered}
$$

Definition. (Carathéodory's condition, 1914.) A set $E \subset \mathbb{R}^{n}$ is (Lebesgue) measurable if

$$
m^{*}(A)=m^{*}(A \cap E)+m^{*}(\underbrace{A \backslash E}_{=A \cap E^{c}}) \text { for all } A \subset \mathbb{R}^{n} .
$$

Remark. $E \subset \mathbb{R}^{n}$ measurable \Longleftrightarrow

$$
m^{*}(A) \geq m^{*}(A \cap E)+m^{*}(A \backslash E) \quad \text { for all } A \subset \mathbb{R}^{n}, \text { with } m^{*}(A)<\infty
$$

Reason: \leq follows from the subadditivity and \geq holds always if $m^{*}(A)=+\infty$.
Definition. If $E \subset \mathbb{R}^{n}$ is measurable, we denote

$$
m(E)=m^{*}(E) \quad \text { or } m_{n}(E) \text { if needed. }
$$

$m(E)$ is the (n-dimensional Lebesgue) measure of E.
We write

$$
\text { Leb } \mathbb{R}^{n}=\left\{E \subset \mathbb{R}^{n}: E \text { Lebesgue measurable }\right\} \quad \subset \mathcal{P}\left(\mathbb{R}^{n}\right)
$$

Hence

$$
m=m^{*} \mid \operatorname{Leb} \mathbb{R}^{n}: \operatorname{Leb} \mathbb{R}^{n} \rightarrow[0, \infty], \quad \text { restriction of the outer measure. }
$$

Later we will show that

$$
\operatorname{Leb} \mathbb{R}^{n} \subsetneq \mathcal{P}\left(\mathbb{R}^{n}\right)
$$

Theorem 1.12.

$$
m^{*}(E)=0 \quad \Rightarrow \quad E \text { measurable. }
$$

Proof. Let $A \subset \mathbb{R}^{n}$ be an arbitrary test set.

$$
\begin{gathered}
\stackrel{A \cap E \subset E}{ } \stackrel{\text { monotonicity }}{\Longrightarrow} m^{*}(A \cap E)=0 \\
A \supset A \backslash E \stackrel{\text { monotonocity }}{\Longrightarrow} m^{*}(A) \geq m^{*}(A \backslash E)=\underbrace{m^{*}(A \cap E)}_{=0}+m^{*}(A \backslash E) \\
\Rightarrow \quad E \text { measurable. }
\end{gathered}
$$

Theorem 1.13.

$$
E \text { measurable } \Longleftrightarrow E^{c} \quad \text { measurable. }
$$

Proof. It s enough to show \Rightarrow : Let E be measurable and $A \subset \mathbb{R}^{n}$. Then

$$
\begin{aligned}
m^{*}(A) & =m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right) \\
& =m^{*}\left(A \cap\left(E^{c}\right)^{c}\right)+m^{*}\left(A \cap E^{c}\right) \\
& \Rightarrow \quad E^{c} \quad \text { measurable. }
\end{aligned}
$$

Example.

$$
\begin{gathered}
E \subset \mathbb{R}^{n} \text { countable } \stackrel{\text { Ex. } 3}{\Longrightarrow} m^{*}(E)=0 \\
\stackrel{\text { Thm. } 1.12}{\Longrightarrow} E \text { measurable } \stackrel{\text { Thm. } 1.13}{\Longrightarrow} E^{c} \text { measurable. }
\end{gathered}
$$

$\underline{\text { Special cases: }}$

$$
\emptyset \in \operatorname{Leb} \mathbb{R}, \quad \mathbb{R} \in \operatorname{Leb} \mathbb{R},
$$

$$
\text { rational numbers } \mathbb{Q} \in \operatorname{Leb} \mathbb{R} \text {, irrational numbers } \mathbb{R} \backslash \mathbb{Q} \in \operatorname{Leb} \mathbb{R} \text {. }
$$

Let E_{1}, E_{2}, \ldots be measurable. We will prove that

$$
\bigcup_{i=1}^{\infty} E_{i} \quad \text { and } \quad \bigcap_{i=1}^{\infty} E_{i} \quad \text { are measurable. }
$$

To prove these statements we need some auxiliary lemmata. First the case of a finite union/intersection:
Lemma 1.14. $\quad E_{1}, \ldots, E_{k} \quad$ measurable $\Rightarrow \bigcup_{i=1}^{k} E_{i}$ and $\bigcap_{i=1}^{k} E_{i} \quad$ measurable.

Proof. (a) union:

$$
\bigcup_{i=1}^{k} E_{i}=\left(\bigcup_{i=1}^{k-1} E_{i}\right) \cup E_{k}
$$

\Rightarrow we may assume $k=2$.
Suppose E_{1} and E_{2} are measurable. Let $A \subset \mathbb{R}^{n}$ be a test set.

$$
\left.\begin{array}{c}
E_{1} \text { measurable } \Rightarrow \\
m^{*}(A)=m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{1}^{c}\right) \\
E_{2} \text { measurable, with test set } A \cap E_{1}^{c} \Rightarrow \\
m^{*}\left(A \cap E_{1}^{c}\right)=m^{*}\left(A \cap E_{1}^{c} \cap E_{2}\right)+m^{*}\left(A \cap E_{1}^{c} \cap E_{2}^{c}\right)
\end{array}\right\} \Longrightarrow
$$

where

$$
\begin{aligned}
B & =\left(A \cap E_{1}\right) \cup\left(A \cap E_{1}^{c} \cap E_{2}\right)=A \cap\left(E_{1} \cup\left(E_{1}^{c} \cap E_{2}\right)\right)=A \cap\left(E_{1} \cup\left(E_{2} \backslash E_{1}\right)\right) \\
& =A \cap\left(E_{1} \cup E_{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
m^{*}(A) & \geq m^{*}(B)+m^{*}\left(A \cap E_{1}^{c} \cap E_{2}^{c}\right) \\
& =m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right) \\
& \Rightarrow \quad E_{1} \cup E_{2} \quad \text { measurable. }
\end{aligned}
$$

(b) intersection: de Morgan, Theorem 1.13 ("measurability of the complement") and part (a)

$$
\bigcap_{i=1}^{k} E_{i}=\left(\bigcup_{i=1}^{k} E_{i}^{c}\right)^{c} \quad \text { measurable. }
$$

Theorem 1.15. $\quad E_{1}, E_{2}$ measurable $\Rightarrow E_{1} \backslash E_{2}$ measurable.
Proof. $\quad E_{1} \backslash E_{2}=E_{1} \cap E_{2}^{c}$.

Lemma 1.16. Let E_{1}, \ldots, E_{k} be disjoint and measurable, and let $A \subset \mathbb{R}^{n}$ be an arbitrary set. Then

$$
m^{*}\left(A \cap\left(\bigcup_{i=1}^{k} E_{i}\right)\right)=\sum_{i=1}^{k} m^{*}\left(A \cap E_{i}\right)
$$

Proof. (a) The case $k=2: \quad E_{1}$ measurable, $A \cap\left(E_{1} \cup E_{2}\right)=B$ as the test set $\quad \Rightarrow$

$$
\begin{aligned}
m^{*}(B) & =m^{*}(\underbrace{B \cap E_{1}}_{=A \cap E_{1}})+m^{*}(\underbrace{B \backslash E_{1}}_{=A \cap E_{2}}) \\
& =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{2}\right) \quad \text { i.e. the claim. }
\end{aligned}
$$

(b) general case: By induction: Suppose that the claim holds for $2 \leq k \leq p$, that is

$$
\left.\begin{array}{c}
E_{1}, \ldots, E_{p} \text { measurable } \\
E_{i} \cap E_{j}=\emptyset, i \neq j \\
A \subset \mathbb{R}^{n}
\end{array}\right\} \Rightarrow m^{*}\left(A \cap\left(\bigcup_{i=1}^{p} E_{i}\right)\right)=\sum_{i=1}^{p} m^{*}\left(A \cap E_{i}\right)
$$

Thus we get (for $k=p+1$)

$$
\begin{gathered}
A \cap\left(\bigcup_{i=1}^{p+1} E_{i}\right)=A \cap\left(\left(\bigcup_{i=1}^{p} E_{i}\right) \cup E_{p+1}\right) \\
\bigcup_{i=1}^{p} E_{i}, E_{p+1} \\
m^{*}\left(A \cap\left(\bigcup_{i=1}^{p+1} E_{i}\right)\right) \stackrel{k=2}{=} m^{*}\left(A \cap\left(\bigcup_{i=1}^{p} E_{i}\right)\right)+m^{*}\left(A \cap E_{p+1}\right) \\
\stackrel{k=p}{=} \sum_{i=1}^{p} m^{*}\left(A \cap E_{i}\right)+m^{*}\left(A \cap E_{p+1}\right) \\
\\
=\sum_{i=1}^{p+1} m^{*}\left(A \cap E_{i}\right)
\end{gathered}
$$

Lemma 1.17. Let $E=\bigcup_{i=1}^{\infty} E_{i}$, where the sets E_{i} are measurable. Then there exist disjoint and measurable sets $F_{i} \subset E_{i}$ s.t.

$$
E=\bigcup_{i=1}^{\infty} F_{i}
$$

Proof. Choose

$$
\begin{aligned}
& F_{1}=E_{1}, \quad \text { [measurable] } \\
& F_{2}=E_{2} \backslash E_{1}, \quad \text { [measurable (Thm. 1.15)] } \\
& \vdots \\
& F_{k}=E_{k} \backslash \bigcup_{i=1}^{k-1} E_{i}, \quad \text { [measurable (Thm. 1.15 and L. 1.14)] } \\
& \vdots
\end{aligned}
$$

Then clearly

$$
F_{i} \subset E_{i} \quad \forall i, \quad E=\bigcup_{i=1}^{\infty} F_{i} \quad \text { and } \quad F_{i} \cap F_{j}=\emptyset \forall i \neq j .
$$

The main result of Lebesgue measurable sets

Theorem 1.18. Let E_{1}, E_{2}, \ldots be a sequence (possibly finite) of measurable sets. Then the sets

$$
\bigcup_{i} E_{i} \text { and } \bigcap_{i} E_{i}
$$

are measurable. If, in addition, the sets E_{i} are disjoint, then

$$
\begin{equation*}
m\left(\bigcup_{i} E_{i}\right)=\sum_{i} m\left(E_{i}\right) . \quad(" \text { countably additivity") } \tag{1.19}
\end{equation*}
$$

Proof. Denote

$$
\begin{aligned}
S & =\bigcup_{i} E_{i} \stackrel{1.17}{=} \bigcup_{i} F_{i}, \quad F_{i} \text { measurable and disjoint, } \\
S_{k} & =\bigcup_{i}^{k} F_{i}, \quad S_{k} \subset S
\end{aligned}
$$

L. 1.14 (measurability of finite unions) $\Rightarrow S_{k}$ measurable. Let A be a test set. Then

$$
\begin{aligned}
& m^{*}(A)=m^{*}\left(A \cap S_{k}\right)+m^{*}\left(A \backslash S_{k}\right) \\
& \stackrel{\text { monot. }}{\geq} m^{*}\left(A \cap S_{k}\right)+m^{*}(A \backslash S) \\
& \stackrel{1.16}{=} \sum_{i=1}^{k} m^{*}\left(A \cap F_{i}\right)+m^{*}(A \backslash S) \quad \forall k \in \mathbb{N} .
\end{aligned}
$$

Letting $k \rightarrow \infty$ we get

$$
\begin{align*}
& m^{*}(A) \geq \sum_{i=1}^{\infty} m^{*}\left(A \cap F_{i}\right)+m^{*}(A \backslash S) \tag{1.20}\\
& \text { subadd. } \\
& \quad \geq m^{*}\left(\cup_{i=1}^{\infty}\left(A \cap F_{i}\right)\right)+m^{*}(A \backslash S) \\
&=m^{*}(A \cap S)+m^{*}(A \backslash S) \\
& \Rightarrow S=\bigcup_{i} E_{i} \text { measurable. }
\end{align*}
$$

Inequality (1.20), in the case $A=S$, and the subadditivity $\quad \Rightarrow$

$$
\sum_{i}^{\infty} m\left(F_{i}\right) \stackrel{\text { subadd. }}{\geq} m(S) \stackrel{(1.20)}{\geq} \sum_{i=1}^{\infty} m^{*}(\overbrace{S \cap F_{i}}^{=F_{i}}+\overbrace{m^{*}(S \backslash S)}^{=0}=\sum_{i=1}^{\infty} m\left(F_{i}\right) .
$$

If E_{i} are disjoint, we may choose $F_{i}=E_{i}$, and therefore (1.19) holds.
The first part of the proof and Thm. 1.13 imply that $\bigcap_{i} E_{i}=\left(\bigcup_{i} E_{i}^{c}\right)^{c}$ is measurable.

Example. Let $A \subset \mathbb{R}^{2}$ s.t.

$$
\begin{equation*}
m^{*}(A \cap B(x, r)) \leq|x| r^{3} \quad \forall x \in \mathbb{R}^{2}, \forall r>0 \tag{1.21}
\end{equation*}
$$

Claim: $m(A)=0$
Proof. (a) Suppose first that A is bounded, so $A \subset Q=[-a, a] \times[-a, a]$ (closed square) for some a. Let $n \in \mathbb{N}$. Devide Q into closed (sub-)squares Q_{j}, with side length $=2 a / n, j=1, \ldots, n^{2}$. Let x_{j} be the center of Q_{j}. Then

$$
\begin{gathered}
\left|x_{j}\right| \leq 2 a \quad \text { and } \quad Q_{j} \subset B\left(x_{j}, 2 a / n\right) \quad \text { (rough estimates) } \\
\Rightarrow m^{*}\left(A \cap Q_{j}\right) \stackrel{\text { monot. }}{\leq} m^{*}\left(A \cap B\left(x_{j}, 2 a / n\right)\right) \stackrel{(1.21)}{\leq}\left|x_{j}\right|(2 a / n)^{3} \leq(2 a)^{4} n^{-3} . \\
A=\bigcup_{j=1}^{n^{2}}\left(A \cap Q_{j}\right) \stackrel{\text { subadd. }}{\Longrightarrow} \\
m^{*}(A)=m^{*}\left(\bigcup_{j=1}^{n^{2}}\left(A \cap Q_{j}\right)\right) \leq \sum_{j=1}^{n^{2}} m^{*}\left(A \cap Q_{j}\right) \\
\leq n^{2}(2 a)^{4} n^{-3}=(2 a)^{4} n^{-1} \quad \forall n \\
\stackrel{n \rightarrow \infty}{\Longrightarrow} m^{*}(A)=0 \Rightarrow m(A)=0 .
\end{gathered}
$$

(b) General case:

$$
\begin{gathered}
A=\bigcup_{j \in \mathbb{N}} A_{j}, \text { where } A_{j}=A \cap B(0, j) \text { bounded. } \\
A_{j} \subset A \Rightarrow A_{j} \text { satisfies the assumption }(1.21) \stackrel{(\text { a) }}{\Rightarrow} m\left(A_{j}\right)=0 \forall j \\
\text { subadd. } m(A)=0 .
\end{gathered}
$$

1.22 Examples of measurable sets

So far we know that:

$$
m^{*}(A)=0 \Rightarrow A \text { and } A^{c} \text { measurable. }
$$

Now we will prove that, for example, open sets and closed sets are measurable. First:
$I \subset \mathbb{R}^{n} \quad n$-interval (open, closed, etc.) $\quad \Rightarrow \quad I$ is measurable and $m(I)=\ell(I)$.
We use (Riemann) integration:
Let $I=I_{1} \times \cdots \times I_{n} \subset \mathbb{R}^{n} n$-interval, where $I_{j} \subset \mathbb{R}$ is an interval, with end points $a_{j}<b_{j}, j=$ $1, \ldots, n$. Let $\chi_{I}: \mathbb{R}^{n} \rightarrow\{0,1\} \quad$ (the characteristic function of I)

$$
\chi_{I}(x)= \begin{cases}1, & x \in I \\ 0, & x \notin I\end{cases}
$$

Choose an n-interval $Q \supset I$ and (Riemann) integrate

$$
\int_{Q} \chi_{I}=\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} 1 d x_{1} \cdots d x_{n}=\left(b_{1}-a_{1}\right) \cdots\left(b_{n}-a_{n}\right)=\ell(I)
$$

Lemma 1.23. Let I and I_{1}, \ldots, I_{k} be n-intervals s.t. $I \subset \bigcup_{j=1}^{k} I_{j}$. Then $\ell(I) \leq \sum_{j=1}^{k} \ell\left(I_{j}\right)$. If, furthermore, the intersections $I_{i} \cap I_{j}, i \neq j$, do not have interior points (i.e. no $I_{i} \cap I_{j}, i \neq j$, contains an open ball) and $I=\bigcup_{j=1}^{k} I_{j}$, then $\ell(I)=\sum_{j=1}^{k} \ell\left(I_{j}\right)$.

Proof. Define $\chi, \chi_{j}: \mathbb{R}^{n} \rightarrow\{0,1\}$,

$$
\chi(x)=\left\{\begin{array}{ll}
1, & x \in I \\
0, & x \notin I
\end{array} \quad \text { and } \quad \chi_{j}(x)= \begin{cases}1, & x \in I_{j} \\
0, & x \notin I_{j}\end{cases}\right.
$$

Then it follows from the assumption $I \subset \bigcup_{j=1}^{k} I_{j}$ that $\chi(x) \leq \sum_{j=1}^{k} \chi_{j}(x) \forall x \in \mathbb{R}^{n}$. Choose an n-interval Q that contains all the n-intervals mentioned above and (Riemann) integrate over Q

$$
\ell(I)=\int_{Q} \chi \leq \int_{Q}\left(\sum_{j} \chi_{j}\right)=\sum_{j} \int_{Q} \chi_{j}=\sum_{j} \ell\left(I_{j}\right)
$$

If the n-intervals I_{j} do not have common interior points, then $\chi(x)=\sum_{j=1}^{k} \chi_{j}(x)$ except possible on the boundaries of n-intervals that do not contribute to the integrals.

Lemma 1.24. If I is an n-interval, then

$$
m^{*}(I)=\ell(I)
$$

Proof. (a): $\forall \varepsilon>0 \exists$ an open n-interval $J \supset I$ s.t. $\ell(J)<\ell(I)+\varepsilon$.
$\{J\} \quad$ Leb. cover of $I \Rightarrow m^{*}(I) \leq \ell(I)+\varepsilon$

$$
\varepsilon>0 \text { arbitr. } \Rightarrow m^{*}(I) \leq \ell(I)
$$

(b): Suppose first that I is closed. Let \mathcal{F} be a Lebesgue cover of I. Since I is closed and bounded, I is compact. So \exists a finite subcover $\mathcal{F}_{0}=\left\{I_{1}, \ldots, I_{k}\right\} \subset \mathcal{F}$. Lemma $1.23 \Rightarrow$

$$
\begin{gathered}
\ell(I) \leq S\left(\mathcal{F}_{0}\right) \leq S(\mathcal{F}) \\
\text { inf over } \forall \mathcal{F} \Rightarrow \ell(I) \leq m^{*}(I)
\end{gathered}
$$

Hence: $\ell(I)=m^{*}(I)$ if I is closed. Suppose then that I need not be closed. Let $\varepsilon>0$. Now \exists a closed n-interval $I_{c} \subset I$ s.t. $\ell\left(I_{c}\right)>\ell(I)-\varepsilon$. Thus

$$
\begin{aligned}
& m^{*}(I) \stackrel{\text { monot. }}{\geq} m^{*}\left(I_{c}\right)=\ell\left(I_{c}\right)>\ell(I)-\varepsilon \\
& \varepsilon>0 \text { arbitr. } \Rightarrow m^{*}(I) \geq \ell(I)
\end{aligned}
$$

Remark. The above holds also for degenerate n-intervals $I=I_{1} \times \cdots \times I_{n} \subset \mathbb{R}^{n}$, where at least one I_{j} is a singleton. Then $\ell(I) \stackrel{\text { def. }}{=} 0=m_{n}^{*}(I)$.

Let $A \subset \mathbb{R}^{n}, \varepsilon>0$ and let $J_{1}, J_{2}, \ldots \subset \mathbb{R}^{n}$ be arbitrary n-intervals s.t. $A \subset \bigcup_{i=1}^{\infty} J_{i}$. For each $i \exists$ open n-interval $I_{i} \supset J_{i}$ s.t. $\ell\left(I_{i}\right)<\ell\left(J_{i}\right)+\varepsilon / 2^{i}$. Now $\left\{I_{1}, I_{2} \ldots\right\}$ is a Lebesgue cover of A, and therefore $m^{*}(A) \leq \sum_{i=1}^{\infty} \ell\left(I_{i}\right) \leq \sum_{i=1}^{\infty} \ell\left(J_{i}\right)+\varepsilon$. (Recall a geometric series.) It follows that

$$
m^{*}(A)=\inf \left\{\sum_{i=1}^{\infty} \ell\left(J_{i}\right): A \subset \bigcup_{i=1}^{\infty} J_{i}, J_{i} \text { arbitrary } n \text {-interval }\right\}
$$

Theorem 1.25. If I is an n-interval, then I is measurable and

$$
m(I)=\ell(I)
$$

Proof. L. $1.24 \Rightarrow$ it suffices to prove that I is measurable. Let $A \subset \mathbb{R}^{n}$ be a test set. Claim:

$$
m^{*}(A) \geq m^{*}(A \cap I)+m^{*}(A \backslash I)
$$

Let $\varepsilon>0$. Then \exists a Lebesgue cover of A by open n-intervals $\mathcal{F}=\left\{I_{1}, I_{2}, \ldots\right\}$ s.t.

$$
\left.\begin{array}{c}
S(\mathcal{F}) \leq m^{*}(A)+\varepsilon . \\
I=\Delta_{1} \times \cdots \times \Delta_{n} \\
\left.I_{j}=\right] a_{1}, b_{1}[\times \cdots \times] a_{n}, b_{n}[
\end{array}\right\} \Rightarrow \Rightarrow(] a_{1}, b_{1}\left[\cap \Delta_{1}\right) \times \cdots \times(] a_{n}, b_{n}\left[\cap \Delta_{n}\right)=\left\{\begin{array}{l}
n \text {-interval } I_{j}^{\prime} \\
\emptyset .
\end{array}\right.
$$

$I_{j} \backslash I$ is not necessarily an n-interval but

$$
I_{j} \backslash I=\bigcup_{k} I_{j, k}^{\prime \prime}
$$

is a finite union of n-intervals s.t. the intersections $I_{j}^{\prime} \cap I_{j, k}^{\prime \prime}$ and $I_{j, k}^{\prime \prime} \cap I_{j, i}^{\prime \prime}, k \neq i$, do not have interior points.

Lemma 1.23 and $1.24 \Rightarrow$

$$
\ell\left(I_{j}\right) \stackrel{1.23}{=} \ell\left(I_{j}^{\prime}\right)+\sum_{k} \ell\left(I_{j, k}^{\prime \prime}\right) \stackrel{1.24}{=} m^{*}\left(I_{j}^{\prime}\right)+\sum_{k} m^{*}\left(I_{j, k}^{\prime \prime}\right)
$$

Taking the sum over $j \Rightarrow$

$$
\begin{aligned}
& m^{*}(A)+\varepsilon \geq S(\mathcal{F})=\sum_{j} \ell\left(I_{j}\right)=\sum_{j} m^{*}\left(I_{j}^{\prime}\right)+\sum_{j} \sum_{k} m^{*}\left(I_{j, k}^{\prime \prime}\right) \\
& \quad \begin{array}{l}
\text { subadd. } \\
\\
\geq m^{*}(\underbrace{\bigcup_{j} I_{j}^{\prime}}_{\supset A \cap I})+m^{*}(\underbrace{\bigcup_{j, k} I_{j, k}^{\prime \prime}}_{\supset A \backslash I}) \\
\quad \text { monot. } \\
\quad \geq m^{*}(A \cap I)+m^{*}(A \backslash I) .
\end{array}
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0 \Rightarrow m^{*}(A) \geq m^{*}(A \cap I)+m^{*}(A \backslash I)$.
Theorem 1.26. (Lindelöf's theorem) Let $A \subset \mathbb{R}^{n}$ be an arbitrary set and

$$
\bigcup_{\alpha \in \mathcal{A}} V_{\alpha} \supset A
$$

where the sets $V_{\alpha} \subset \mathbb{R}^{n}, \alpha \in \mathcal{A}$ are open. Then there exists a countable sub-cover

$$
\bigcup_{j \in \mathbb{N}} V_{\alpha_{j}} \supset A
$$

Proof. Exerc.
Theorem 1.27. Open subsets and closed subsets of \mathbb{R}^{n} are measurable.
Proof. (a) Let A be open. If $x \in A, \exists$ an open n-interval $I(x)$ s.t. $x \in I(x) \subset A(\exists$ an open ball $B\left(x, r_{x}\right) \subset A$ and it contains an open n-interval).

$$
\{I(x): x \in A\} \quad \text { is an open cover of } A
$$

Lindelöf $\Rightarrow \exists$ countable sub-cover $\left\{I\left(x_{j}\right): j \in \mathbb{N}\right\}$

$$
\begin{aligned}
& \Rightarrow A=\bigcup_{j \in \mathbb{N}} I\left(x_{j}\right) \quad \text { is a countable union of measurable sets } \\
& \Rightarrow A \quad \text { is measurable. }
\end{aligned}
$$

(b) If A is closed, its complement A^{c} is open and hence measurable $\Rightarrow A=\left(A^{c}\right)^{c}$ is measurable.

Example. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be continuous. Claim: $f \mathbb{R}^{2}$ is measurable.
Proof.

$$
\begin{aligned}
& \mathbb{R}^{2}=\bigcup_{j \in \mathbb{N}} A_{j}, \quad \text { where } A_{j}=\bar{B}(0, j) \text { si compact } \\
& f \text { continuous } \Rightarrow f A_{j} \text { compact } \\
& \Rightarrow f A_{j} \text { closed } \Rightarrow f A_{j} \text { measurable } \\
& f \mathbb{R}^{2}=\bigcup_{j \in \mathbb{N}} f A_{j} \Rightarrow f \mathbb{R}^{2} \text { measurable. }
\end{aligned}
$$

Recall: Let $n, m \geq 1$. A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous $\Longleftrightarrow f^{-1} U \subset \mathbb{R}^{n}$ is open \forall open $U \subset \mathbb{R}^{m}$.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous and $C \subset \mathbb{R}^{n}$ is compact, then $f C \subset \mathbb{R}^{m}$ is compact. Reason:

$$
\begin{gathered}
f C \subset \bigcup_{i \in I} U_{i} \quad \text { open cover } \\
\Rightarrow C \subset \bigcup_{i \in I} f^{-1} U_{i} \quad \text { open cover } \\
C \text { compact } \\
C \subset \bigcup_{j=1}^{k} f^{-1} U_{i_{j}} \Rightarrow f C \subset \bigcup_{j=1}^{k} U_{i_{j}}
\end{gathered}
$$

More general measurable sets, σ-algebras.

$$
\begin{aligned}
& \mathcal{F}_{\sigma} \text { sets } \bigcup_{i \in \mathbb{N}} F_{i}, \quad F_{i} \text { closed } \quad(\text { e.g. } \mathbb{Q},[a, b),(a, b]) \\
& \mathcal{G}_{\delta} \text { sets } \bigcap_{i \in \mathbb{N}} G_{i}, \quad G_{i} \text { open } \quad(\text { e.g. } \mathbb{R} \backslash \mathbb{Q},[a, b),(a, b]) \\
& \mathcal{F}_{\sigma \delta} \text { sets } \bigcap_{i \in \mathbb{N}} A_{j}, A_{j} \in \mathcal{F}_{\sigma} \\
& \mathcal{G}_{\delta \sigma} \text { sets } \bigcup_{i \in \mathbb{N}} B_{j}, B_{j} \in \mathcal{G}_{\delta} \\
& \text { etc. }
\end{aligned}
$$

Definition. Let X be an arbitrary set. A family $\Gamma \subset \mathcal{P}(X)$ is a σ-algebra ("sigma-algebra") of X if
(a) $\emptyset \in \Gamma$;
(b) $A \in \Gamma \Rightarrow X \backslash A \in \Gamma$;
(c) $A_{i} \in \Gamma, i \in \mathbb{N} \Rightarrow \bigcup_{i=1}^{\infty} A_{i} \in \Gamma$.

Remark. (1) If Γ is a σ-algebra and $A_{i} \in \Gamma, i \in \mathbb{N}$, then also $\bigcap_{i} A_{i} \in \Gamma$ since

$$
\bigcap_{i} A_{i}=\bigcap_{i}\left(A_{i}^{c}\right)^{c}=\left(\bigcup_{i=1} A_{i}^{c}\right)^{c} \in \Gamma .
$$

(2) We have proved: The family of Lebesgue measurable sets Leb \mathbb{R}^{n} is a σ-algebra of \mathbb{R}^{n} (Theorems 1.12, 1.13, 1.18).
(3) $\mathcal{P}(X)$ is the largest σ-algebra of $X ;\{\emptyset, X\}$ is the smallest σ-algebra of $X ; A \subset X$ (fixed) $\Rightarrow\left\{\emptyset, X, A, A^{c}\right\}$ is a σ-algebra of X.

Definition. The family of Borel sets Bor \mathbb{R}^{n} is the smallest σ-algebra of \mathbb{R}^{n} that contains all closed sets.

Existence: Denote

$$
\mathcal{B}=\bigcap\left\{\Gamma: \Gamma \text { is a } \sigma \text {-algebra of } \mathbb{R}^{n}, \Gamma \text { contains closed sets }\right\} .
$$

(For instance $\Gamma=\mathcal{P}\left(\mathbb{R}^{n}\right)$ is a σ-algebra of \mathbb{R}^{n} that contains all closed sets.) \mathcal{B} is a σ-algebra since:
(a) $\emptyset \in \mathcal{B}$;
(b) $A \in \mathcal{B} \Rightarrow A^{c} \in \Gamma \forall \Gamma \Rightarrow A^{c} \in \mathcal{B}$;
(c) $A_{i} \in \mathcal{B} \Rightarrow \bigcup_{i \in \mathbb{N}} A_{i} \in \Gamma \forall \Gamma \Rightarrow \bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{B}$.

The construction $\Rightarrow \mathcal{B}$ is the smallest σ-algebra of \mathbb{R}^{n} that contains closed sets, and so

$$
\text { Bor } \mathbb{R}^{n}=\mathcal{B} .
$$

Open sets, closed sets, \mathcal{F}_{σ} sets, \mathcal{G}_{δ} sets, etc. are Borel sets.
Theorem 1.28. Every Borel sets is measurable.
Proof. The family of measurable sets Leb \mathbb{R}^{n} is a σ-algebra and contains closed sets, and therefore

$$
\text { Bor } \mathbb{R}^{n} \subset \operatorname{Leb} \mathbb{R}^{n} \text {. }
$$

1.29 General measure theory

Definition. Let Γ be a σ-algebra in X. A function $\mu: \Gamma \rightarrow[0,+\infty]$ is a measure in X if
(i) $\mu(\emptyset)=0$;
(ii) $A_{i} \in \Gamma, i \in \mathbb{N}$, disjoint $\Rightarrow \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right)$. "countably additivity" The triple (X, Γ, μ) is a measure space.

Remark. 1. A measure μ is also monotonic:

$$
A, B \in \Gamma, A \subset B \Rightarrow 0 \leq \mu(A) \leq \mu(B)
$$

Reason: $A, B \backslash A \in \Gamma$ disjoint, $B=A \cup(B \backslash A)$

$$
\Rightarrow \mu(B)=\mu(A)+\underbrace{\mu(B \backslash A)}_{\geq 0} \geq \mu(A) .
$$

2. $A, B \in \Gamma, A \subset B, \mu(A)<\infty \Rightarrow \mu(B \backslash A)=\mu(B)-\mu(A)$.
3. A measure μ is a probability measure if $\mu(X)=1$.

Example. (1) n-dimensional Lebesgue measure

$$
m_{n}: \operatorname{Leb} \mathbb{R}^{n} \rightarrow[0,+\infty]
$$

is a measure.
Reason: Leb \mathbb{R}^{n} is a σ-algebra in \mathbb{R}^{n} and m is countably additive.
(2) Let $X \neq \emptyset$ be an arbitrary set. Fix $x \in X$ and define for all $A \subset X$

$$
\mu(A)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}
$$

Then $\mu: \mathcal{P}(X) \rightarrow[0,+\infty]$ is a probability measure (so-called Dirac measure at the point $x \in X)$.
Reason: (a) $\mathcal{P}(X)$ is σ-algebra.
(b) Let $A_{j} \subset X, j \in \mathbb{N}$, be disjoint. Then

$$
\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} \mu\left(A_{j}\right)
$$

since

$$
\left\{\begin{array}{l}
x \notin \bigcup_{j=1}^{\infty} A_{j} \Rightarrow \text { both sides }=0 \\
x \in \bigcup_{j=1}^{\infty} A_{j} \stackrel{\text { disjoint }}{\Longrightarrow} \exists \text { exactly one } j_{0} \in \mathbb{N} \text { s.t. } x \in A_{j_{0}} \Rightarrow \text { both sides }=1
\end{array}\right.
$$

(3) $\mu: \mathcal{P}(X) \rightarrow[0,+\infty], \mu(A)=0 \forall A \subset X$, is a measure.
(4) Let $a_{j} \geq 0, j \in \mathbb{N}$, s.t. $\sum_{j=1}^{\infty} a_{j}=1$. Define for all $A \subset \mathbb{N}$

$$
\mu(A)=\sum_{j \in A} a_{j}
$$

Then $\mu: \mathcal{P}(\mathbb{N}) \rightarrow[0,1]$ is a probability measure.
Definition. Let X be an arbitrary set. A mapping $\mu^{*}: \mathcal{P}(X) \rightarrow[0,+\infty]$ is an outer measure in X if
(1) $\mu^{*}(\emptyset)=0$;
(2) $A \subset B \Rightarrow \mu^{*}(A) \leq \mu^{*}(B)$;
(3) $A_{j} \subset X, j \in \mathbb{N} \Rightarrow \mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)$.

Furthermore, a set $E \subset X$ is ($\mu^{*}-$) measurable, if (Carathéodory's criterion)

$$
\begin{equation*}
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}(A \backslash E) \tag{1.30}
\end{equation*}
$$

holds $\forall A \subset X$.
Denote

$$
\mathcal{M}_{\mu^{*}}(X)=\left\{E \subset X: E \mu^{*} \text {-measurable }\right\}
$$

of $\mathcal{M}(X)$ is μ^{*} is clear from the context.
Remark. $\mathcal{M}(X) \subset \mathcal{P}(X)$ is a σ-algebra in X and the restriction

$$
\mu^{*} \mid \mathcal{M}(X): \mathcal{M}(X) \rightarrow[0,+\infty]
$$

is a measure. Proof as in the case of Lebesgue measure.

1.31 Convergence of measures

Let $X \neq \emptyset, \Gamma \subset \mathcal{P}(X)$ a σ-algebra, and $\mu: \Gamma \rightarrow[0,+\infty]$ a measure.
Theorem 1.32. Let $A_{j} \in \Gamma, j=1, \ldots$, be an increasing sequence (i.e. $A_{1} \subset A_{2} \subset \ldots \subset X$ (μ-)measurable). Then

$$
\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\lim _{j \rightarrow \infty} \mu\left(A_{j}\right)
$$

Note: $A_{j} \in \Gamma \forall j \in \mathbb{N} \Rightarrow \bigcup_{j=1}^{\infty} A_{j} \in \Gamma$.
Proof.

$$
\bigcup_{j=1}^{\infty} A_{j}=\bigcup_{j=1}^{\infty}(\underbrace{A_{j} \backslash A_{j-1}}_{\substack{\text { disjoint, measurable } \\ A_{j+2}}}), \quad A_{0}=\emptyset \quad(\text { a convention })
$$

μ countably additive \Rightarrow

$$
\begin{aligned}
\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right) & =\sum_{j=1}^{\infty} \mu\left(A_{j} \backslash A_{j-1}\right) \\
& =\lim _{k \rightarrow \infty} \sum_{j=1}^{k} \mu\left(A_{j} \backslash A_{j-1}\right) \\
& =\lim _{k \rightarrow \infty} \mu(\underbrace{\left.\bigcup_{j=1}^{k}\left(A_{j} \backslash A_{j-1}\right)\right)}_{=A_{k}} \\
& =\lim _{k \rightarrow \infty} \mu\left(A_{k}\right)
\end{aligned}
$$

Theorem 1.33. Let $A_{j} \in \Gamma, j=1, \ldots$, be a decreasing sequence (i.e. $X \supset A_{1} \supset A_{2} \supset \ldots$ (μ-)measurable). If, in addition, $\mu\left(A_{k}\right)<\infty$ for some $k \in \mathbb{N}$, then

$$
\mu\left(\bigcap_{j=1}^{\infty} A_{j}\right)=\lim _{j \rightarrow \infty} \mu\left(A_{j}\right)
$$

Note: $\Gamma \sigma$-alg. $\Rightarrow \bigcap_{j=1}^{\infty} A_{j} \in \Gamma$.

Proof. We may assume that $\mu\left(A_{1}\right)<\infty$. Denote $\bigcap_{j=1}^{\infty} A_{j}=A$ and $B_{j}=A_{1} \backslash A_{j}$. Then $B_{1} \subset B_{2} \subset$... are measurable.

$$
\begin{gathered}
\text { Theorem } 1.32 \Rightarrow \mu\left(\bigcup_{j=1}^{\infty} B_{j}\right)=\lim _{j \rightarrow \infty} \mu\left(B_{j}\right) . \\
\bigcup_{j=1}^{\infty} B_{j}=\bigcup_{j=1}^{\infty}\left(A_{1} \backslash A_{j}\right)=A_{1} \backslash \bigcap_{j=1}^{\infty} A_{j}=A_{1} \backslash A \\
A_{1}=A_{j} \cup(\underbrace{A_{1} \backslash A_{j}}_{=B_{j}}) \text { disjoint union } \Rightarrow \mu\left(A_{1}\right)=\mu\left(A_{j}\right)+\mu\left(B_{j}\right) \\
A_{1}=A \cup\left(A_{1} \backslash A\right) \quad \text { disjoint union } \Rightarrow \mu\left(A_{1}\right)=\mu(A)+\mu\left(A_{1} \backslash A\right)
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow \mu(A) & \left.=\mu\left(A_{1}\right)-\mu\left(A_{1} \backslash A\right) \quad \text { (here we need } \mu\left(A_{1}\right)<\infty\right) \\
& =\mu\left(A_{1}\right)-\mu\left(\bigcup_{j=1}^{\infty} B_{j}\right) \\
& =\mu\left(A_{1}\right)-\lim _{j \rightarrow \infty} \mu\left(B_{j}\right) \\
& =\mu\left(A_{1}\right)-\lim _{j \rightarrow \infty}\left(\mu\left(A_{1}\right)-\mu\left(A_{j}\right)\right) \\
& =\lim _{j \rightarrow \infty} \mu\left(A_{j}\right)
\end{aligned}
$$

Remark. The assumption $\mu\left(A_{k}\right)<\infty$ for some $k \in \mathbb{N}$ is necessary. Ex.

$$
\begin{gathered}
A_{j}=\left\{(x, y) \in \mathbb{R}^{2}: x>j\right\} \\
A_{1} \supset A_{2} \supset A_{3} \supset \cdots \\
m_{2}\left(A_{j}\right)=\infty \forall j \\
\bigcap_{j \in \mathbb{N}} A_{j}=\emptyset \Rightarrow m_{2}\left(\bigcap_{j \in \mathbb{N}} A_{j}\right)=0 \neq \lim _{j \rightarrow \infty} m_{2}\left(A_{j}\right) .
\end{gathered}
$$

Remark. (An important application for instance in probability theory) Borel-Cantelli lemma: Let (X, Γ, μ) be a measure space, $A_{j} \in \Gamma, j \in \mathbb{N}$, and

$$
A=\left\{x \in X: x \in A_{j} \text { for infinitely many } j \in \mathbb{N}\right\}
$$

Then:

$$
\sum_{j=1}^{\infty} \mu\left(A_{j}\right)<\infty \Rightarrow \mu(A)=0
$$

1.34 Non-(Lebesgue-)measurable set in \mathbb{R}

Theorem 1.35. (Vitali, 1905)

$$
\text { Leb } \mathbb{R} \subsetneq \mathcal{P}(\mathbb{R})
$$

in other words, there exists a subset $E \subset \mathbb{R}$ that is not Lebesgue measurable.
An idea is to find a set $B \subset \mathbb{R}, 0<m^{*}(B)<\infty$, and a decomposition of B

$$
B=\bigcup_{i=1}^{\infty} A_{i}
$$

into disjoint sets A_{i} s.t.

$$
m^{*}\left(A_{i}\right)=m^{*}\left(A_{1}\right) \forall i
$$

Then some A_{i} must be non measurable. A way to guarantee that the sets A_{i} have the same outer measure is to choose

$$
A_{i}=A+x_{i}
$$

for some (fixed) $A \subset \mathbb{R}$ and $x_{i} \in \mathbb{R}$, and use the translation invariance of the outer measure m^{*}.

Proof. Consider the quotient space \mathbb{R} / \mathbb{Q} whose elementys are equivalence classes $E(x), x \in \mathbb{R}$.

$$
E(x)=E(y) \Longleftrightarrow x \sim y \Longleftrightarrow x-y \in \mathbb{Q} .
$$

We may write $E(x)=x+\mathbb{Q}$. Choose from each equivalence class $E(x), x \in \mathbb{R}$, exactly one representative that belongs to the unit interval $[0,1]$. Let A be the set of such chosen points (representatives).

Claim: $A \notin \operatorname{Leb} \mathbb{R}$.
Assume on the contrary: $A \in \operatorname{Leb} \mathbb{R}$.
(i) The sets $A+r, r \in \mathbb{Q}$, are disjoint since:

$$
\begin{aligned}
x \in(A+r) \cap(A+s), r, s \in \mathbb{Q} & \Rightarrow x=a_{1}+r \text { and } x=a_{2}+s, \quad a_{1}, a_{2} \in A \\
& \Rightarrow a_{1}-a_{2}=s-r \in \mathbb{Q} \\
& \Rightarrow a_{1} \sim a_{2} \Rightarrow E\left(a_{1}\right)=E\left(a_{2}\right) \\
& \Rightarrow a_{1}=a_{2} \quad \text { (because we choose exactly one representative) } \\
& \Rightarrow s=r .
\end{aligned}
$$

(ii) $m(A)=0$ (we use the tranlation invariance: $A \in \operatorname{Leb} \mathbb{R} \Rightarrow A+a \in \operatorname{Leb} \mathbb{R}$ and $m(A)=$ $m(A+a))$:

$$
\begin{aligned}
A \subset[0,1] & \Rightarrow A+\frac{1}{n} \subset[0,2] \quad \forall n \in \mathbb{N} \\
\Rightarrow 2 & \geq m\left(\bigcup_{n=1}^{\infty}\left(A+\frac{1}{n}\right)\right) \stackrel{\text { disjoint }}{=} \sum_{n=1}^{\infty} m\left(A+\frac{1}{n}\right)=\sum_{n=1}^{\infty} m(A) \\
& \Rightarrow m(A)=0 .
\end{aligned}
$$

(iii) $\mathbb{R}=\bigcup_{r \in \mathbb{Q}}(A+r)$:

$$
\begin{aligned}
x \in \mathbb{R} & \Rightarrow \exists a \in E(x) \cap A \Rightarrow x-a=r \in \mathbb{Q}, a \in A \\
& \Rightarrow x=a+r, \quad a \in A \\
& \Rightarrow x \in A+r .
\end{aligned}
$$

(i), (ii) ja (iii) \Rightarrow

$$
+\infty=m(\mathbb{R})=\sum_{r \in \mathbb{Q}} m(A+r)=\sum_{r \in \mathbb{Q}} \underbrace{m(A)}_{=0}=0 . \text { contradiction }
$$

Remark. 1. Also in $\mathbb{R}^{n}, \forall n \geq 1, \exists$ similar examples, and so

$$
\operatorname{Leb} \mathbb{R}^{n} \subsetneq \mathcal{P}\left(\mathbb{R}^{n}\right)
$$

2. If $A \subset \mathbb{R}$ is an arbitrary set s.t. $m^{*}(A)>0$, then $\exists B \subset A$ s.t. $B \notin$ Leb \mathbb{R}.

2 Measurable mappings

2.1 Measurable mapping

Denote $\dot{\mathbb{R}}=\mathbb{R} \cup\{-\infty\} \cup\{+\infty\}$.
Definition. Let $A \subset \mathbb{R}^{n}$. A mapping $f: A \rightarrow \mathbb{R}^{m}$ is measurable (w.r.t. σ-algebra Leb \mathbb{R}^{n}) if $f^{-1} G$ is (Lebesgue-)measurable for all open $G \subset \mathbb{R}^{m}$. A mapping $f: A \rightarrow \dot{\mathbb{R}}$ is measurable if
(i) $f^{-1} G$ is measurable for all open $G \subset \mathbb{R}^{m}$,
(ii) $f^{-1}(+\infty)$ is measurable, and
(iii) $f^{-1}(-\infty)$ is measurable.

Remark. 1. $f: A \rightarrow \mathbb{R}^{m}$ measurable \Rightarrow

$$
A=f^{-1} \mathbb{R}^{m} \subset \mathbb{R}^{n} \quad \text { is a measurable set. }
$$

Similarly $f: A \rightarrow \dot{\mathbb{R}}$ measurable \Rightarrow

$$
A=f^{-1}(\mathbb{R}) \cup f^{-1}(+\infty) \cup f^{-1}(+\infty) \subset \mathbb{R}^{n} \quad \text { is a measurable set. }
$$

2. $f: A \rightarrow \mathbb{R}^{m}$ measurable, $B \subset A$ measurable $\Rightarrow f \mid B: B \rightarrow \mathbb{R}^{m}$ measurable.

Reason: $G \subset \mathbb{R}^{m}$ open \Rightarrow

$$
(f \mid B)^{-1}(G)=\underbrace{B}_{\text {measurable }} \cap \underbrace{f^{-1} G}_{\text {measurable }}
$$

is measurable.
3. Let X be an arbitrary set and $\Gamma \subset \mathcal{P}(X)$ a σ-algebra.

Define: A mapping $f: X \rightarrow \mathbb{R}$ is measurable (w.r.t. σ-algebra Γ) if $f^{-1} G \in \Gamma$ for all open $G \subset \mathbb{R}$.

Recall A mapping $f: A \rightarrow \mathbb{R}^{m}, A \subset \mathbb{R}^{n}$, is continuous at $x \in A$ if $\forall \varepsilon>0 \quad \exists \delta=\delta(\varepsilon)>0$ s.t.

$$
f(B(x, \delta) \cap A) \subset B(f(x), \varepsilon)
$$

$f: A \rightarrow \mathbb{R}^{m}$ is continous if f is continuous at every $x \in A$.

Fact: $f: A \rightarrow \mathbb{R}^{m}$ continuous \Longleftrightarrow

$$
\begin{equation*}
f^{-1} G \text { is open in } A \forall \text { poen } G \subset \mathbb{R}^{m} \text {, i.e. } f^{-1} G=A \cap V \text {, where } V \subset \mathbb{R}^{n} \text { is open. } \tag{2.2}
\end{equation*}
$$

Theorem 2.3. A measurable and $f: A \rightarrow \mathbb{R}^{m}$ continuous $\Rightarrow f$ measurable.
Proof.

$$
\begin{gathered}
G \subset \mathbb{R}^{m} \text { open } \stackrel{(2.2)}{\Longrightarrow} f^{-1} G \text { open in } A \Rightarrow \exists \text { open } V \subset \mathbb{R}^{n} \text { s.t. } \\
f^{-1} G=\underbrace{A}_{\text {measurable }} \cap \underbrace{V}_{\text {measurable }} \in \operatorname{Leb} \mathbb{R}^{n} \\
\Rightarrow f \text { measurable. }
\end{gathered}
$$

Theorem 2.4. If $f: A \rightarrow \mathbb{R}^{m}$ is measurable, then $f^{-1} B$ is measurable for all Borel sets $B \subset \mathbb{R}^{m}$. Proof. Denote $\Gamma=\left\{V \subset \mathbb{R}^{m}: f^{-1} V\right.$ measurable $\}$. Then Γ is a σ-algebra because:
(1) $f^{-1} \emptyset=\emptyset$ measurable $\Rightarrow \emptyset \in \Gamma$,
(2) $V \in \Gamma \Rightarrow f^{-1} V^{c}=\underbrace{A}_{\text {measurable }} \backslash \underbrace{f^{-1} V}_{\text {measurable }}$ measurable $\Rightarrow V^{c} \in \Gamma$,
(3) $V_{i} \in \Gamma, i \in \mathbb{N} \Rightarrow f^{-1}\left(\bigcup_{i \in \mathbb{N}} V_{i}\right)=\bigcup_{i \in \mathbb{N}} \underbrace{f^{-1} V_{i}}_{\text {measurable }}$ measurable $\Rightarrow \bigcup_{i \in \mathbb{N}} V_{i} \in \Gamma$.

Furthermore Γ contains all closed sets because: F closed $\Rightarrow F^{c}$ open $\Rightarrow f^{-1} F=(\underbrace{f^{-1}\left(F^{c}\right)}_{\text {measurable }})^{c}$ measurable $\Rightarrow F \in \Gamma$.
Hence $\Gamma \supset$ Bor \mathbb{R}^{m} (= the smallest σ-algebra that contains all closed sets).
Corollary 2.5. If f is measurable, then the preimage $f^{-1}(y)$ of a point y and the preimage $f^{-1} I$ of an interval are measurable.

Example. Let $E \subset \mathbb{R}^{n}$ amd $\chi_{E}: \mathbb{R}^{n} \rightarrow\{0,1\}$ the characteristic function of E,

$$
\chi_{E}(x)= \begin{cases}1, & \text { if } x \in E, \\ 0, & \text { if } x \notin E .\end{cases}
$$

Claim: χ_{E} measurable function $\Longleftrightarrow E$ measurable set.
Proof. $\Rightarrow \quad E=\chi_{E}^{-1}(1)$ measurable (Cor. 2.5).
\Leftrightarrow Let E be measurable and $G \subset \mathbb{R}$ ope.

$$
\chi_{E}^{-1}(G)= \begin{cases}\mathbb{R}^{n}, & \text { if }\{0,1\} \subset G, \\ \emptyset, & \text { if }\{0,1\} \cap G=\emptyset, \\ E, & \text { if }\{0,1\} \cap G=\{1\}, \\ E^{c}, & \text { if }\{0,1\} \cap G=\{0\} .\end{cases}
$$

These sets are measurable $\Rightarrow \chi_{E}$ measurable function.

Theorem 2.6. Let $f: A \rightarrow \mathbb{R}^{m}$ be measurable, $A \subset \mathbb{R}^{n}$, and $g: B \rightarrow \mathbb{R}^{k}$ continuous, where $f A \subset B \subset \mathbb{R}^{m}$. Then $g \circ f$ is measurable.

Proof.

$$
\begin{aligned}
&\left.\begin{array}{l}
G \subset \mathbb{R}^{k} \text { open } \\
\\
g \text { continuous }
\end{array}\right\} \stackrel{(2.2)}{\Longrightarrow} g^{-1} G \text { open in } B \\
& \Rightarrow \exists \text { open } V \subset \mathbb{R}^{m} \text { s.t. } g^{-1} G=B \cap V \\
& \Rightarrow(g \circ f)^{-1} G= f^{-1}\left(g^{-1} G\right)=f^{-1}(B \cap V) \stackrel{f A \subset B}{=} f^{-1}(V) \quad \text { measurable. }
\end{aligned}
$$

Warning: f and g measurable $\nRightarrow g \circ f$ measurable.
If $f: A \rightarrow \mathbb{R}^{m}$, then

$$
f=\left(f_{1}, \ldots, f_{m}\right), f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)
$$

where

$$
f_{j}: A \rightarrow \mathbb{R}, f_{j}(x)=\left(P_{j} \circ f\right)(x) \text { and } P_{j}\left(y_{1}, \ldots, y_{m}\right)=y_{j}(=\text { projection onto } j \text { 's coordinate axis }) .
$$

Theorem 2.7. $f=\left(f_{1}, \ldots, f_{m}\right): A \rightarrow \mathbb{R}^{m}$ is measurable $\Longleftrightarrow f_{j}$ is measurable $\forall j \in\{1, \ldots, m\}$. Proof. \Rightarrow If f is measurable, then $f_{j}=P_{j} \circ f$ is measurable (Thm. 2.6) since P_{j} is continuous. \Leftarrow Suppose that f_{j} is measurable $\forall j$. Let $G \subset \mathbb{R}^{m}$ be open.

Lindelöf $\Rightarrow G=\bigcup_{i \in \mathbb{N}} I^{(i)}, \quad I^{(i)}$ open m-interval (cf. proof of Thm. 1.27)

$$
\begin{gathered}
I^{(i)}=I_{1}^{(i)} \times \cdots \times I_{m}^{(i)}=\bigcap_{j=1}^{m} P_{j}^{-1} I_{j}^{(i)}, \quad I_{j}^{(i)} \subset \mathbb{R} \text { open } \\
f^{-1} G=\bigcup_{i \in \mathbb{N}} f^{-1} I^{(i)}=\bigcup_{i \in \mathbb{N}} \bigcap_{j=1}^{m} f^{-1} P_{j}^{-1} I_{j}^{(i)}=\bigcup_{i \in \mathbb{N}} \bigcap_{j=1}^{m} \underbrace{f_{j}^{-1} I_{j}^{(i)}}_{\text {measurable }} \text { measurable. }
\end{gathered}
$$

Theorem 2.8. Let $f: A \rightarrow \dot{\mathbb{R}}$ and $g: A \rightarrow \dot{\mathbb{R}}$ be measurable. Then their sum and product are measurable (whenever defined). Furthermore, $\lambda f, \lambda \in \mathbb{R}$ and $|f|^{a}$, a>0, are measurable.

Proof. Sum: Suppose first that $f, g: A \rightarrow \mathbb{R}$ are measurable. Denote $f+g=u \circ v$, where

$$
A \xrightarrow{v} \mathbb{R}^{2} \xrightarrow{u} \mathbb{R}, \quad v=(f, g) \quad \text { and } \quad u(x, y)=x+y .
$$

$$
\left.\begin{array}{c}
\text { Thm. } 2.7 \Rightarrow v \text { measurable } \\
u \text { continuous }
\end{array}\right\} \Rightarrow f+g=u \circ v \text { measurable. }
$$

Note: The case $f, g: A \rightarrow \mathbb{R}^{m}$ measurable $\Rightarrow f+g$ measurable follows from Theorem 2.7.
Suppose then that $f, g: A \rightarrow \dot{\mathbb{R}}$ are measurable. [The sum $f+g$ is defined if there exists no point $x \in A$ such that $\{f(x), g(x)\}=\{+\infty,-\infty\}$.] Denote $f+g=h$. We know that A is measurable (Remark 1.). On the other hand,

$$
\begin{aligned}
A & =h^{-1}(+\infty) \cup h^{-1}(-\infty) \cup A_{0}, \quad \text { where } A_{0}=h^{-1} \mathbb{R} . \\
h^{-1}(+\infty) & =f^{-1}(+\infty) \cup g^{-1}(+\infty) \text { is measurable. } \\
h^{-1}(-\infty) & =f^{-1}(-\infty) \cup g^{-1}(-\infty) \text { is measurable. } \\
& \Rightarrow A_{0} \text { is measurable. }
\end{aligned}
$$

$f \mid A_{0}$ and $g \mid A_{0}$ measurable (Remark 2.) $\stackrel{\text { beginning of proof }}{\Longrightarrow} h^{-1} G$ is measurable $\forall G \subset \mathbb{R}$ open

$$
\Rightarrow h \text { is measurable. }
$$

Product. Similarly (Exerc.)
λf Special case of the product.
$|f|^{a}|f|^{a}=u \circ f$, where $u(x)=|x|^{a}$ continuous if $a>0$. Thm. 2.6 $\Rightarrow|f|^{a}$ is measurable.
From now on we consider only functions $f: A \rightarrow \dot{\mathbb{R}}, A \subset \mathbb{R}^{n}$.
An important basic criterion:
Theorem 2.9. Let $A \subset \mathbb{R}^{n}$ be measurable and $f: A \rightarrow \dot{\mathbb{R}}$. TFAE (= the following are equivalent)
(1) f is measurable;
(2) $E_{a}=\{x \in A: f(x)<a\}$ is measurable $\forall a \in \mathbb{R}$;
(3) $E_{a}^{\prime}=\{x \in A: f(x)>a\}$ is measurable $\forall a \in \mathbb{R}$;
(4) $E_{a}^{\prime \prime}=\{x \in A: f(x) \leq a\}$ is measurable $\forall a \in \mathbb{R}$;
(5) $E_{a}^{\prime \prime \prime}=\{x \in A: f(x) \geq a\}$ is measurable $\forall a \in \mathbb{R}$.

Proof.

$$
\begin{aligned}
E_{a}^{\prime \prime \prime} & =A \backslash E_{a} \quad \text { hence }(2) \Longleftrightarrow(5) \\
E_{a}^{\prime \prime} & =A \backslash E_{a}^{\prime} \quad \text { hence }(3) \Longleftrightarrow(4) \\
E_{a}^{\prime \prime} & =\bigcap_{j \in \mathbb{N}} E_{a+1 / j} \quad \text { hence }(2) \stackrel{\text { Thm. . }}{\Longrightarrow} \\
E_{a} & =\bigcup_{j \in \mathbb{N}} E_{a-1 / j}^{\prime \prime}(4) \\
E_{a} & =f^{-1}(\underbrace{(-\infty, a)}_{\text {open }}) \cup f^{-1}(-\infty) \quad \text { hence }(4) \stackrel{\text { Thm. }}{\Longrightarrow}
\end{aligned}
$$

Suppose that (2) holds [and thus also (3),(4),(5)] Claim: (1) holds, that is, f is measurable. Proof: Let $G \subset \mathbb{R}$ be open.

$$
\begin{aligned}
G & =\bigcup_{j \in \mathbb{N}} I_{j}, \quad I_{j}=\left(a_{j}, b_{j}\right) \text { open interval (Lindelöf) } \\
f^{-1} G & =\bigcup_{j \in \mathbb{N}} f^{-1} I_{j}, \quad f^{-1} I_{j}=\left\{x: a_{j}<f(x)<b_{j}\right\}=E_{a_{j}}^{\prime} \cap E_{b_{j}} \text { measurable } \\
\Rightarrow & f^{-1} G \text { measurable } \\
& f^{-1}(+\infty)=\bigcap_{j \in \mathbb{N}} E_{j}^{\prime} \text { measurable } \\
& f^{-1}(-\infty)=\bigcap_{j \in \mathbb{N}} E_{-j} \text { measurable } \\
& \Rightarrow f \text { measurable. }
\end{aligned}
$$

Remark. The assumption " A measurable" is necessary in Theorem 2.9. Example: Let A be nonmeasurable (Thm. 1.35) and $x_{0} \in A$. Define $f: A \rightarrow \dot{\mathbb{R}}$,

$$
f(x)= \begin{cases}+\infty & \text { if } x \in A \backslash\left\{x_{0}\right\}, \\ -\infty & \text { if } x=x_{0} .\end{cases}
$$

Then $E_{a}=\{x \in A: f(x)<a\}=\left\{x_{0}\right\}$ is measurable $\forall a \in \mathbb{R}$, thus (2) holds but f can not be measurable (since A non-measurable), that is (1) does not hold.

Example. Claim: $f: \mathbb{R} \rightarrow \mathbb{R}$ measurable \Longleftrightarrow

$$
\left\{\begin{array}{l}
(1) \quad f^{2} \text { measurable function, } \\
(2) \quad E=\{x: f(x)>0\} \text { measurable set. }
\end{array}\right.
$$

Proof: \square Denote $E_{a}=\{x: f(x)<a\}$. We must prove E_{a} is measurable $\forall a \in \mathbb{R}$ (Theorem 2.9).
(i) Let $a>0$.

$$
\begin{gathered}
f(x)<a \Longleftrightarrow f(x)^{2}<a^{2} \text { or } f(x) \leq 0, \text { hence } \\
E_{a}=\underbrace{\left\{x: f^{2}(x)<a^{2}\right\}}_{\text {measurable (1) }} \cup \underbrace{E^{c}}_{\text {measurable (2) }} \text { measurable. }
\end{gathered}
$$

(ii) Let $a \leq 0$.

$$
\begin{aligned}
& f(x)<a \Longleftrightarrow f(x)^{2}>a^{2} \text { and } f(x) \leq 0, \text { hence } \\
& E_{a}=\underbrace{\left\{x: f^{2}(x)>a^{2}\right\}}_{\text {measurable (1) }} \cap \underbrace{E^{c}}_{\text {measurable (2) }} \text { measurable. }
\end{aligned}
$$

Theorem $2.9 \Rightarrow f$ is measurable.
$\Rightarrow \quad f$ measurable $\stackrel{\text { Thm }}{\Rightarrow}{ }^{2.8} f^{2}=f \cdot f$ is measurable. Similarly: f measurable $\stackrel{\text { Thm }}{\Rightarrow}{ }^{2.9} E$ measurable.

Remark. f^{2} measurable $\nRightarrow f$ measurable. Reason: Let $E \subset \mathbb{R}$ be non-measurable and $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}1, & \text { if } x \in E \\ -1, & \text { if } x \in E^{c}\end{cases}
$$

Then f^{2} is measurable as a constant function $f^{2}(x) \equiv 1$ but $\{x: f(x)>0\}=E$ is non-measurable set. $\stackrel{\text { Thm. }}{\Longrightarrow}{ }^{2.9} f$ non-measurable.

2.10 limsup and liminf of a sequence

Definition. Let a_{1}, a_{2}, \ldots be a sequence in $\dot{\mathbb{R}}$. Denote

$$
b_{k}=\sup _{i \geq k} a_{i}, \quad c_{k}=\inf _{i \geq k} a_{i} . \quad\left(b_{k}, c_{k} \in \dot{\mathbb{R}} \text { allowed }\right)
$$

Then

$$
\begin{aligned}
& b_{1} \geq b_{2} \geq \cdots \geq b_{k} \geq b_{k+1} \geq \cdots \quad \text { and } \\
& c_{1} \leq c_{2} \leq \cdots \leq c_{k} \leq c_{k+1} \leq \cdots \quad(\text { sup } / \text { inf taken over a smaller set })
\end{aligned}
$$

$\Rightarrow \exists$ limits

$$
\lim _{k \rightarrow \infty} b_{k}=\inf _{k \in \mathbb{N}} b_{k}=\beta \quad \text { and } \quad \lim _{k \rightarrow \infty} c_{k}=\sup _{k \in \mathbb{N}} c_{k}=\gamma \quad(\pm \infty \text { allowed })
$$

Denote

$$
\begin{aligned}
& \beta=\limsup _{i \rightarrow \infty} a_{i} \text { or } \varlimsup_{i \rightarrow \infty} a_{i} \quad \text { "upper limit" or "limes superior" } \\
& \gamma=\liminf _{i \rightarrow \infty} a_{i} \text { or } \quad \begin{array}{l}
\lim _{i \rightarrow \infty} a_{i}
\end{array} \quad \text { "lower limit" or "limes inferior". }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \limsup _{i \rightarrow \infty} a_{i}=\lim _{k \rightarrow \infty}\left(\sup _{i \geq k} a_{i}\right)=\inf _{k \in \mathbb{N}}\left(\sup _{i \geq k} a_{i}\right), \\
& \liminf _{i \rightarrow \infty} a_{i}=\lim _{k \rightarrow \infty}\left(\inf _{i \geq k} a_{i}\right)=\sup _{k \in \mathbb{N}}\left(\inf _{i \geq k} a_{i}\right) .
\end{aligned}
$$

Remark. $\left(a_{i}\right)$ a sequence in $\dot{\mathbb{R}} \Rightarrow \lim \sup _{i \rightarrow \infty} a_{i}$ and $\liminf _{i \rightarrow \infty} a_{i} \quad$ always exist $(\in \dot{\mathbb{R}})$ and are unique.

Example. (1) $\infty,-\infty, \infty,-\infty, \ldots ; \quad b_{k}=\infty \forall k, c_{k}=-\infty \forall k \Rightarrow \beta=\infty, \gamma=-\infty$
(2) $1,2,3,4, \ldots ; \quad b_{k}=\infty \forall k, c_{k}=k \forall k \Rightarrow \beta=\infty=\gamma$
(3) $0,1,0,1,0,1, \ldots ; \quad b_{k}=1 \forall k, c_{k}=0 \forall k \Rightarrow \beta=1, \gamma=0$
(4) $0,-1,0,-2,0,-3, \ldots ; \quad b_{k}=0 \forall k, c_{k}=-\infty \forall k \Rightarrow \beta=0, \gamma=-\infty$.

Theorem 2.11. (i) $\lim \inf _{i \rightarrow \infty} a_{i} \leq \limsup \operatorname{sum}_{i \rightarrow \infty} a_{i}$,
(ii) $a_{i} \leq M \forall i \geq i_{0} \Rightarrow \lim \sup _{i \rightarrow \infty} a_{i} \leq M$,
(iii) $a_{i} \geq m \forall i \geq i_{0} \Rightarrow \liminf _{i \rightarrow \infty} a_{i} \geq m$.

Proof. (i) $c_{k} \leq b_{k} \Rightarrow \gamma=\lim _{k \rightarrow \infty} c_{k} \leq \lim _{k \rightarrow \infty} b_{k}=\beta$,
(ii) $b_{k} \leq M \forall k \geq i_{0} \Rightarrow \beta=\lim _{k \rightarrow \infty} b_{k} \leq M$,
(iii) $c_{k} \geq m \forall k \geq i_{0} \Rightarrow \gamma=\lim _{k \rightarrow \infty} c_{k} \geq m$.

Theorem 2.12. Let $\left(a_{i}\right)$ be a sequence in $\dot{\mathbb{R}}$. Then

$$
\exists \lim _{i \rightarrow \infty} a_{i}(\in \dot{\mathbb{R}}) \Longleftrightarrow \liminf _{i \rightarrow \infty} a_{i}=\limsup _{i \rightarrow \infty} a_{i} \quad(\in \dot{\mathbb{R}})
$$

In this case

$$
\lim _{i \rightarrow \infty} a_{i}=\liminf _{i \rightarrow \infty} a_{i}=\limsup _{i \rightarrow \infty} a_{i} \quad(\pm \infty \quad \text { allowed })
$$

Proof. \Rightarrow Suppose that $\exists \alpha=\lim _{i \rightarrow \infty} a_{i}$.
(a1) $\alpha \in \mathbb{R}$

$$
\begin{gathered}
\varepsilon>0 \Rightarrow \exists i_{0} \text { s.t. } \alpha-\varepsilon<a_{i}<\alpha+\varepsilon \forall i \geq i_{0} \\
\Rightarrow \alpha-\varepsilon \leq c_{i_{0}} \leq \gamma \leq \beta \leq b_{i_{0}} \leq \alpha+\varepsilon \\
\varepsilon \text { arbotrary } \Rightarrow \gamma=\beta
\end{gathered}
$$

(a2) $\alpha=\infty$

$$
\begin{aligned}
M \in \mathbb{R} & \Rightarrow \exists i_{0} \text { s.t. } a_{i}>M \forall i \geq i_{0} \\
& \Rightarrow M \leq c_{i_{0}} \leq \gamma \leq \beta \\
M & \text { arbitrary } \Rightarrow \gamma=\beta=\infty
\end{aligned}
$$

(a3) $\alpha=-\infty$ similarly.
\Leftarrow Suppose that $\beta=\gamma \stackrel{\text { denote }}{=} \alpha$.
(b1) $\alpha \in \mathbb{R}$

$$
\begin{gathered}
\varepsilon>0 \Rightarrow \exists k_{1} \text { s.t. } b_{k}<\alpha+\varepsilon \forall k \geq k_{1} \\
\exists k_{2} \text { s.t. } c_{k}>\alpha-\varepsilon \forall k \geq k_{2} \\
k \geq \max \left\{k_{1}, k_{2}\right\} \Rightarrow \alpha-\varepsilon<c_{k} \leq a_{k} \leq b_{k}<\alpha+\varepsilon \\
\varepsilon \text { arbitrary } \Rightarrow \alpha=\lim _{k \rightarrow \infty} a_{k}
\end{gathered}
$$

(b2) $\alpha=\infty$

$$
\begin{aligned}
& M \in \mathbb{R} \Rightarrow \exists k_{0} \text { s.t. } c_{k}>M \forall k \geq k_{0} \\
& \Rightarrow a_{k} \geq c_{k}>M \forall k \geq k_{0} \\
& \quad \Rightarrow \lim _{k \rightarrow \infty} a_{k}=\infty
\end{aligned}
$$

(b3) $\alpha=-\infty$ similarly.

2.13 Measurablity of limit function

Theorem 2.14. Let $f_{j}: A \rightarrow \dot{\mathbb{R}}, j \in \mathbb{N}$, be measurable. Then the functions

$$
\sup _{j \in \mathbb{N}} f_{j}, \quad \inf _{j \in \mathbb{N}} f_{j}, \quad \underset{j \rightarrow \infty}{\limsup } f_{j}, \quad \liminf _{j \rightarrow \infty} f_{j}
$$

are measurable. If $\exists f=\lim _{j \rightarrow \infty} f_{j}$, then f is measurable.
Remark. These functions are defined pointwise $\forall x \in A$. For instance, the value of the function $\sup _{j \in \mathbb{N}} f_{j}$ at a point $x \in A$ is $\sup _{j \in \mathbb{N}} f_{j}(x) \in \mathbb{R}$.
Proof. Denote $g(x)=\sup _{j \in \mathbb{N}} f_{j}(x), x \in A$. For all $a \in \mathbb{R}$:

$$
\begin{align*}
& \{x \in A: g(x) \leq a\} \stackrel{(*)}{=} \bigcap_{j \in \mathbb{N}} \overbrace{\left\{x \in A: f_{j}(x) \leq a\right\}}^{\text {measurable }} \quad \text { is measurable } \Rightarrow g=\sup _{j \in \mathbb{N}} f_{j} \text { is measurable. } \tag{2.15}\\
& \left((*): g(x) \leq a \Longleftrightarrow f_{j}(x) \leq a \forall j \in \mathbb{N}\right)
\end{align*}
$$

$\inf _{j \in \mathbb{N}} f_{j}=-\sup _{j \in \mathbb{N}}\left(-f_{j}\right) \quad$ is measurable,
$\limsup _{j \rightarrow \infty} f_{j}=\inf _{k \in \mathbb{N}}\left(\sup _{j \geq k} f_{j}\right) \quad$ is measurabel [(2.15), (2.16)],
$\liminf _{j \rightarrow \infty} f_{j}=\sup _{k \in \mathbb{N}}\left(\inf _{j \geq k} f_{j}\right) \quad$ is measurable $[(2.15),(2.16)]$.
If $\exists f=\lim _{j \rightarrow \infty} f_{j}$, then $\lim _{j \rightarrow \infty} f_{j} \stackrel{\text { Thm. }}{=}{ }^{2.12} \limsup _{j \rightarrow \infty} f_{j} \quad$ is measurable.

Almost every(where) (abbreviated a.e.) = except a set of measure zero.
Example:
(a) a.e. real number is irrational, because $m(\mathbb{Q})=0$.
(b) $e^{-j x^{2}} \xrightarrow{j \rightarrow \infty} 0$ for a.e. $x \in \mathbb{R}$ since $m(\{0\})=0$.

Theorem 2.17. Let $f, g: A \rightarrow \dot{\mathbb{R}}$. Suppose that f is measurable and $g=f$ a.e. Then g is measurable.

Proof. $f, g: A \rightarrow \dot{\mathbb{R}}$ and $f(x)=g(x) \forall x \in A \backslash A_{0}$, where $A_{0} \subset A, m\left(A_{0}\right)=0$. Let $a \in \mathbb{R}$. Denote

$$
\begin{aligned}
& E_{a}=\underbrace{\{x \in A: f(x)<a\}}_{\text {measurable }} \text { and } F_{a}=\{x \in A: g(x)<a\} . \\
& \quad F_{a}=\left(F_{a} \cap A_{0}\right) \cup\left(F_{a} \backslash A_{0}\right), \\
& m^{*}\left(F_{a} \cap A_{0}\right) \leq m^{*}\left(A_{0}\right)=0 \Rightarrow F_{a} \cap A_{0} \quad \text { is measurable. } \\
& \\
& F_{a} \backslash A_{0}=E_{a} \backslash A_{0} \text { is measurable } \\
& \quad \Rightarrow F_{a} \text { Is measurable. }
\end{aligned}
$$

Remark. Hence sets of measure zero do not affect on measurability \Rightarrow we may talk about measurability of functions that are defined only a.e.

Theorem 2.18. Let $f_{j}: A \rightarrow \dot{\mathbb{R}}, j \in \mathbb{N}$, be measurable and $f_{j} \rightarrow f$ a.e. Then f is measurable.
Proof. $\quad f=\limsup \operatorname{sum}_{j \rightarrow \infty} f_{j}$ a.e.
Example. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $\exists f^{\prime}(x) \forall x \in \mathbb{R}$.
Claim: f^{\prime} is measurable.
Proof: Denote

$$
g_{n}(x)=\frac{f(x+1 / n)-f(x)}{1 / n}, \quad \text { hence } \quad f^{\prime}(x)=\lim _{n \rightarrow \infty} g_{n}(x)
$$

$\exists f^{\prime}(x) \forall x \in \mathbb{R} \Rightarrow f$ continuous and therefore measurable $\Rightarrow g_{n}$ measurable (Thm. 2.8) $\stackrel{\text { Thm. } 2.14}{\Longrightarrow} f^{\prime}$ measurable.

3 Lebesgue integral

3.1 Simple functions

Definition. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is simple if
(1) f is measurable,
(2) $f \geq 0 \quad\left(f(x) \geq 0 \forall x \in \mathbb{R}^{n}\right)$,
(3) f takes only finitely many values.

Denote $Y=\left\{f \mid f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ simple $\} \quad\left(\right.$ or $\left.Y_{n}\right)$.

Remark. 1. $f \in Y \Rightarrow f(x) \neq \infty \forall x$.
2. $f \in Y, E \in \operatorname{Leb} \mathbb{R}^{n} \Rightarrow f \chi_{E} \in Y$.

Let $f \in Y$ and let $a_{1}, \ldots, a_{k} \in[0,+\infty)$ be the values of f. Then

$$
A_{i}=f^{-1}\left(a_{i}\right) \quad \text { are measurable and disjoint, } \quad \mathbb{R}^{n}=\bigcup_{i=1}^{k} A_{i}
$$

and

$$
f=\sum_{i=1}^{k} a_{i} \cdot \chi_{A_{i}}
$$

is the standard representation of f.

Definition. Let $f \in Y$ and $f=\sum_{i=1}^{k} a_{i} \cdot \chi_{A_{i}}$ its standard representation. Then the integral of f (over \mathbb{R}^{n}) is

$$
I(f)=\sum_{i=1}^{k} a_{i} m\left(A_{i}\right) . \quad(\text { recall } 0 \cdot \infty=0)
$$

If $E \subset \mathbb{R}^{n}$ is measurable, then the integral of f over E is

$$
I(f, E)=I\left(f \chi_{E}\right) .
$$

In particular:

$$
\begin{aligned}
& I(f)=I\left(f, \mathbb{R}^{n}\right) \\
& 0 \leq I(f, E) \leq \infty \\
& E \in \operatorname{Leb} \mathbb{R}^{n} \Rightarrow I\left(\chi_{E}\right)=m(E) .
\end{aligned}
$$

Theorem 3.2. If $f \in Y$ and $\sum_{i=1}^{k} a_{i} \cdot \chi_{A_{i}}$ is the standard representation of f, then

$$
I(f, E)=\sum_{i=1}^{k} a_{i} m\left(A_{i} \cap E\right) .
$$

Proof. Omitted.
Theorem 3.3. Let $E_{j}, j \in \mathbb{N}$, be measurable and disjoint sets and let $E=\bigcup_{j \in \mathbb{N}} E_{j}$. If $f \in Y$, then

$$
I(f, E)=\sum_{j \in \mathbb{N}} I\left(f, E_{j}\right)
$$

Proof. Let $f=\sum_{i=1}^{k} a_{i} \chi_{A_{i}}$ be the standard representation.

$$
\text { L. } 3.2 \Rightarrow I(f, E)=\sum_{i=1}^{k} a_{i} m\left(A_{i} \cap E\right) \text {. }
$$

Since $A_{i} \cap E=\bigcup_{j \in \mathbb{N}}\left(A_{i} \cap E_{j}\right)$, then (by the countable additivity Thm. 1.18)

$$
\begin{aligned}
& m\left(A_{i} \cap E\right)=\sum_{j \in \mathbb{N}} m\left(A_{i} \cap E_{j}\right) \quad \forall i=1, \ldots, k \\
& \Rightarrow I(f ; E)=\sum_{i=1}^{k} a_{i} \sum_{j \in \mathbb{N}} m\left(A_{i} \cap E_{j}\right)=\sum_{j \in \mathbb{N}} \sum_{i=1}^{k} a_{i} m\left(A_{i} \cap E_{j}\right) \\
& \stackrel{3.2}{=} \sum_{j \in \mathbb{N}} I\left(f, E_{j}\right) .
\end{aligned}
$$

Remark. Clearly $I(f, \emptyset)=I\left(f \chi_{\emptyset}\right)=I(0)=0$, and therefore by Thm. 3.3 the mapping

$$
\operatorname{Leb} \mathbb{R}^{n} \rightarrow[0,+\infty], \quad E \mapsto I(f, E)
$$

is a measure for every (fixed) $f \in Y$.

Convergence theorem $1.32 \Rightarrow$
Corollary 3.4. If $f \in Y$ and $E_{1} \subset E_{2} \subset \cdots$ are measurable, then

$$
I\left(f, \cup_{j=1}^{\infty} E_{j}\right)=\lim _{j \rightarrow \infty} I\left(f, E_{j}\right)
$$

Theorem 3.5. Let $f, g \in Y, E$ measurable, and $a \geq 0$ a constant. Then
(i) $f+g \in Y$ and $I(f+g, E)=I(f, E)+I(g, E)$;
(ii) $a f \in Y$ and $I(a f, E)=a I(f, E)$.

Proof. (i): Clearly $f+g \in Y$.
(a) Let $E=\mathbb{R}^{n}$ and

$$
f=\sum_{j=1}^{k} a_{j} \chi_{A_{j}}, \quad g=\sum_{i=1}^{\ell} b_{i} \chi_{B_{i}}
$$

the standard representation. Then

$$
(f+g) \chi_{A_{i} \cap B_{j}}=\left(a_{i}+b_{j}\right) \chi_{A_{i} \cap B_{j}} \quad \forall i, j \quad \stackrel{3.2}{\Longrightarrow}
$$

$$
\left\{\begin{align*}
I\left(f+g, A_{i} \cap B_{j}\right) & =\left(a_{i}+b j\right) m\left(A_{i} \cap B_{j}\right)=a_{i} m\left(A_{i} \cap B_{j}\right)+b_{j} m\left(A_{i} \cap B_{j}\right) \tag{3.6}\\
& =I\left(f, A_{i} \cap B_{j}\right)+I\left(g, A_{i} \cap B_{j}\right)
\end{align*}\right.
$$

$\mathbb{R}^{n}=$ disjoint union of sets $A_{i} \cap B_{j}$. Theorem $3.3 \Rightarrow$

$$
\begin{aligned}
I(f+g) & \stackrel{3.3}{=} \sum_{i, j} I\left(f+g, A_{i} \cap B_{j}\right) \stackrel{(3.6)}{=} \sum_{i, j} I\left(f, A_{i} \cap B_{j}\right)+\sum_{i, j} I\left(g, A_{i} \cap B_{j}\right) \\
& \stackrel{3.3}{=} I(f)+I(g)
\end{aligned}
$$

(b) E arbitrary.

$$
\begin{aligned}
I(f+g, E) & =I\left((f+g) \chi_{E}\right)=I\left(f \chi_{E}+g \chi_{E}\right)=I\left(f \chi_{E}\right)+I\left(g \chi_{E}\right) \\
& =I(f, E)+I(g, E)
\end{aligned}
$$

(ii): $a f \in Y$ clear.

$$
a=0 \Rightarrow I(a f, E)=0=a I(f, E)
$$

Let $a>0$ and $f=\sum_{i=1}^{k} a_{i} \chi_{A_{i}}$ the standard representation.

$$
\begin{aligned}
a f & =\sum_{i=1}^{k} a a_{i} \chi_{A_{i}} \quad \text { standard representation. } \\
I(a f, E) & =\sum_{i=1}^{k} a a_{i} m\left(A_{i} \cap E\right)=a \sum_{i=1}^{k} a_{i} m\left(A_{i} \cap E\right)=a I(f, E)
\end{aligned}
$$

Theorem 3.7. (1) E measurable and $f, g \in Y, f \leq g$ (i.e. $f(x) \leq g(x) \forall x) \Rightarrow I(f, E) \leq$ $I(g, E)$;
(2) $E \subset F$ measurable, $f \in Y \Rightarrow I(f, E) \leq I(f, F)$;
(3) $f \in Y, m(E)=0 \Rightarrow I(f, E)=0$.

Proof. (1): $g=f+(g-f)$, where $g-f \geq 0$ and $g-f \in Y$. Theorem $3.5 \Rightarrow$

$$
I(g, E) \stackrel{3.5}{=} I(f, E)+\underbrace{I(g-f, E)}_{\geq 0} \geq I(f, E)
$$

(2):

$$
\left.\begin{array}{c}
E \subset F \Rightarrow 0 \leq \chi_{E} \leq \chi_{F} \\
f \in Y
\end{array}\right\} \Rightarrow f \chi_{E} \leq f \chi_{F} \quad(\in Y)
$$

(3): If $f=\sum_{i=1}^{k} a_{i} \chi_{A_{i}}$ is the standard representation, then

$$
I(f, E)=\sum_{i=1}^{k} a_{i} \underbrace{m\left(A_{i} \cap E\right)}_{=0}=0 \quad \text { since } A_{i} \cap E \subset E \text { and } m(E)=0
$$

3.8 Lebesgue integral, $f \geq 0$

Theorem 3.9. Let $f: \mathbb{R}^{n} \rightarrow \dot{\mathbb{R}}$ be measurable and $f \geq 0$. Then \exists an increasing sequence of simple functions $f_{j} \in Y, f_{1} \leq f_{2} \leq \cdots$, s.t. $f(x)=\lim _{j \rightarrow \infty} f_{j}(x) \forall x \in \mathbb{R}^{n}$.

Proof. Define $f_{j}: \mathbb{R}^{n} \rightarrow \dot{\mathbb{R}}$ as follows: Divide $[0, j)$ into disjoint half open intervals I_{1}, \ldots, I_{k}, whose length is $1 / 2^{j}$, i.e.

$$
I_{i}=\left[(i-1) 2^{-j}, i 2^{-j}\right), \quad i=1, \ldots, k=j 2^{j}
$$

Define

$$
\begin{gathered}
f_{j}(x)= \begin{cases}(i-1) 2^{-j}, & \text { if } x \in f^{-1} I_{i}, \quad\left(\text { i.e. } \quad(i-1) 2^{-j} \leq f(x)<i 2^{-j}\right) \\
j, & \text { if } x \in f^{-1}[j,+\infty] \quad(\text { i.e. } f(x) \geq j) .\end{cases} \\
\left.f \text { measurable } \Rightarrow \begin{array}{l}
f^{-1}\left(I_{i}\right) \text { measurable and } \\
f^{-1}[j,+\infty] \text { measurable. }
\end{array}\right\} \Rightarrow f_{j} \in Y, j=1,2, \ldots
\end{gathered}
$$

Construction $\Rightarrow f_{j} \leq f_{j+1}$ (see the picture).

Claim: $f_{j}(x) \rightarrow f(x) \forall x \in \mathbb{R}^{n}$.
(a): $f(x)<+\infty \Rightarrow \exists j_{0}>f(x)$. If $j \geq j_{0}$, then

$$
\begin{gathered}
(i-1) 2^{-j} \leq f(x)<i 2^{-j} \text { for some } i \in\left\{1, \ldots, j 2^{j}\right\} \\
\Rightarrow f_{j}(x)=(i-1) 2^{-j} \leq f(x)<i 2^{-j}=f_{j}(x)+2^{-j} \Rightarrow f(x)-2^{-j}<f_{j}(x) \leq f(x) \\
\Rightarrow \lim _{j \rightarrow \infty} f_{j}(x)=f(x)
\end{gathered}
$$

(b): $f(x)=+\infty \Rightarrow f_{j}(x)=j \forall j \Rightarrow f_{j}(x) \rightarrow+\infty=f(x)$.

Definition. Let $f: \mathbb{R}^{n} \rightarrow \dot{\mathbb{R}}$ be measurable and $f \geq 0$. Then the (Lebesgue) integral of f over \mathbb{R}^{n} is

$$
\int f=\sup \{I(\varphi): \varphi \in Y, \varphi \leq f\}
$$

If $E \subset \mathbb{R}^{n}$ is measurable, then the integral of f over E is

$$
\begin{equation*}
\int_{E} f=\int f \chi_{E} \tag{3.10}
\end{equation*}
$$

Denote also

$$
\int_{E} f=\int_{E} f d m=\int_{E} f(x) d m(x), \quad m=n \text {-dimensional Lebesgue measure. }
$$

If $n=1$ and $E=[a, b]$, we denote $\int_{E} f=\int_{a}^{b} f=\int_{a}^{b} f(x) d x$.
Convention. If $f: A \rightarrow \dot{\mathbb{R}}$ and $E \subset A$, then we define $f \chi_{E}: \mathbb{R}^{n} \rightarrow \dot{\mathbb{R}}$,

$$
f \chi_{E}(x)= \begin{cases}f(x), & \text { if } x \in E \\ 0, & \text { if } x \notin E\end{cases}
$$

Then (3.10) defines $\int_{E} f$ for all measurable $f: A \rightarrow \dot{\mathbb{R}}$ and measurable $E \subset A$.
Theorem 3.11. $f \in Y$ and E measurable $\Rightarrow I(f, E)=\int_{E} f$.
Proof. We may assume $E=\mathbb{R}^{n}$ (otherwise replace f by $f \chi_{E} \in Y$).
(a) $f \leq f \Rightarrow I(f) \leq \int f$.
(b) $\varphi \in Y, \varphi \leq f \stackrel{\text { L. }}{\Rightarrow}{ }^{3.7(1)} I(\varphi) \leq I(f) \Rightarrow \int f \leq I(f)$.

Basic properties of integrals.

Theorem 3.12. Suppose that the functions below are non-negative and measurable and the sets are measurable subsets of \mathbb{R}^{n}.
(1) $f \leq g \Rightarrow \int_{E} f \leq \int_{E} g$
(2) $A \subset B \Rightarrow \int_{A} f \leq \int_{B} g$
(3) $f(x)=0 \forall x \in E \Rightarrow \int_{E} f=0$
(4) $m(E)=0 \Rightarrow \int_{E} f=0$
(5) $0 \leq a<\infty \Rightarrow \int_{E} a f=a \int_{E} f$.

Proof. (1): Let $E=\mathbb{R}^{n}, \varphi \in Y, \varphi \leq f \Rightarrow \varphi \leq g \Rightarrow$

$$
I(\varphi) \leq \int g \stackrel{\text { sup }}{\Longrightarrow} \int f \leq \int g .
$$

$E \in \operatorname{Leb} \mathbb{R}^{n} \Rightarrow f \chi_{E} \leq g \chi_{E}$ in $\mathbb{R}^{n} \xlongequal{(1)}$

$$
\int_{E} f=\int f \chi_{E} \leq \int g \chi_{E}=\int_{E} g .
$$

(2): $f \chi_{A} \leq f \chi_{B}$ ja (1) \Rightarrow claim.
(3): $f \chi_{E}=0 \Rightarrow \int_{E} f=I(0)=0$.
(4): Let $\varphi \in Y, \varphi \leq f \chi_{E}$. Since $\varphi \mid \mathbb{R}^{n} \backslash E=0$, then $\varphi=\varphi \chi_{E}$ and

$$
I(\varphi)=I(\varphi, E) \stackrel{3.7(3)}{=} 0 \stackrel{\text { sup }}{\Longrightarrow} \int_{E} f=0 .
$$

(5): If $a=0$, both sides are zero. Let $a>0, \varphi \in Y, \varphi \leq f \chi_{E} \Rightarrow a \varphi \leq a f \chi_{E} \Rightarrow$

$$
\begin{gathered}
\int_{E} a f \geq I(a \varphi) \stackrel{3.5(\mathrm{iii})}{=} a I(\varphi) \Rightarrow \int_{E} a f \geq a \int_{E} f . \\
f=\frac{1}{a}(a f) \Rightarrow \int_{E} f=\int_{E} \frac{1}{a}(a f) \stackrel{\text { yllä }}{\geq} \frac{1}{a} \int_{E} a f \Rightarrow a \int_{E} f \geq \int_{E} a f .
\end{gathered}
$$

Relation to the Riemann integral.

Theorem 3.13. Let $E \subset \mathbb{R}^{n}$ be bounded and $f: E \rightarrow \mathbb{R}$ measurable, $f \geq 0$. If f is Riemann integrable over E, then the

$$
\text { (Riemann integral) (R) } \int_{E} f=\int_{E} f \quad \text { (Lebesgue integral). }
$$

This is the case, for example, when E is a closed n-interval and f continuous.

Proof. Choose a closed n-interval $I \supset E$. By definition

$$
(\mathrm{R}) \int_{E} f=(\mathrm{R}) \int_{I} f \chi_{E} \quad \text { and } \quad \int_{E} f=\int f \chi_{E}=\int_{I} f \chi_{E}
$$

we may assume that $E=I$ (by replacing f with $f \chi_{E}$). Let $D=\left\{I_{1}, \ldots, I_{k}\right\}$ be a partition of I into half-open disjoint intervals. Denote

$$
\begin{aligned}
g_{i} & =\inf _{x \in I_{i}} f(x), \bar{g}_{i}=\inf _{x \in \bar{I}_{i}} f(x) \quad \Rightarrow \bar{g}_{i} \leq g_{i} \quad \text { and } \\
G_{i} & =\sup _{x \in I_{i}} f(x), \bar{G}_{i}=\sup _{x \in \bar{I}_{i}} f(x) \quad \Rightarrow \bar{G}_{i} \geq G_{i} .
\end{aligned}
$$

The (Riemann) lower sum is

$$
m_{D}=\sum_{i=1}^{k} \bar{g}_{i} \ell\left(I_{i}\right) \leq \sum_{i=1}^{k} g_{i} m\left(I_{i}\right)=I(\varphi)
$$

where $\varphi=\sum_{i=1}^{k} g_{i} \chi_{I_{i}} \in Y$. Similarly the upper sum is

$$
M_{D}=\sum_{i=1}^{k} \bar{G}_{i} \ell\left(I_{i}\right) \geq \sum_{i=1}^{k} G_{i} m\left(I_{i}\right)=I(\psi)
$$

where $\psi=\sum_{i=1}^{k} G_{i} \chi_{I_{i}} \in Y$. Clearly $\varphi \leq f \leq \psi$, and therefore

$$
\begin{equation*}
m_{D} \leq I(\varphi) \stackrel{\text { sup }}{\leq} \int_{E} f \stackrel{f \leq \psi}{\leq} \int_{E} \psi=I(\psi) \leq M_{D} \tag{3.14}
\end{equation*}
$$

Suppose that f is Riemann integrable over E. Then $\forall \varepsilon>0 \exists$ a partition D as above s.t.

$$
\begin{equation*}
m_{D} \leq(\mathrm{R}) \int_{E} f \leq M_{D} \text { (always) and } \quad 0 \leq M_{D}-m_{D}<\varepsilon \tag{3.15}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0$ we obtain from (3.14) and (3.15) \Rightarrow

$$
\text { (R) } \int_{E} f=\int_{E} f
$$

Remark. The case where E is unbounded (improper Riemann integral) is more complicated. A counterpart of Theorem 3.13 holds if $f \geq 0$, but not in general.

The Lebesgue integral is more general than the Riemann integral:
Example. Let $f=\chi_{\mathbb{Q}}, \mathbb{Q}=$ rational numbers. Then f is simple because $f^{-1}(1)=\mathbb{Q}$ and $f^{-1}(0)=\mathbb{R} \backslash \mathbb{Q}$ are measurable.

$$
\int_{E} f=m(E \cap \mathbb{Q})=0 \quad \forall \text { measurable } E \subset \mathbb{R}
$$

On the other hand, f is not Riemann integrable over any interval $[a, b], a<b$, Let $D=\left\{I_{1}, \ldots, I_{k}\right\}$ be a partition of $[a, b]$ into subintervals. Every I_{i} contains both rational and irrational numbers. Hence

$$
\Rightarrow m_{D}=\sum_{i} 0 \cdot \ell\left(I_{i}\right)=0 \text { and } M_{D}=\sum_{i} 1 \cdot \ell\left(I_{i}\right)=b-a
$$

Theorem 3.16. Let $f: E \rightarrow \mathbb{R}$ be measurable, $f \geq 0$ and $\int_{E} f<\infty$. Then $f(x)<\infty$ for a.e. $x \in E$.

Proof. Denote $A=\{x \in E: f(x)=\infty\}$ (measurable set since f is measurable).

$$
\begin{gathered}
f(x) \geq j \quad \forall x \in A, j=1,2, \ldots \Rightarrow j \chi_{A} \leq f \chi_{E} \quad \forall j \\
\Rightarrow \int_{E} f \geq I\left(j \chi_{A}\right)=j m(A) \quad \forall j \\
0 \leq m(A) \leq \frac{1}{j} \underbrace{\int_{E} f \xrightarrow{j \rightarrow \infty} 0 \Rightarrow m(A)=0}_{<\infty} 0
\end{gathered}
$$

Monotone convergence theorem.

Theorem 3.17. (MCT) Let $f_{j}: E \rightarrow \dot{\mathbb{R}}$ be measurable and

$$
0 \leq f_{1} \leq f_{2} \leq \cdots \leq f_{j} \leq f_{j+1} \leq \cdots
$$

Then

$$
\lim _{j \rightarrow \infty} \int_{E} f_{j}=\int_{E} \lim _{j \rightarrow \infty} f_{j} \quad(+\infty \text { aloowed })
$$

Proof. $f_{j} \leq f_{j+1} \Rightarrow \int_{E} f_{j} \leq \int_{E} f_{j+1} \Rightarrow \exists$ a $\operatorname{limit} \lim _{j \rightarrow \infty} \int_{E} f_{j}=a(\in[0, \infty])$. Similarly, $\exists f=\lim _{j \rightarrow \infty} f_{j}$ that is measurable (Thm. 2.14).

$$
f_{j} \leq f \Rightarrow \int_{E} f_{j} \leq \int_{E} f \Rightarrow a \leq \int_{E} f
$$

Need to prove: $\int_{E} f \leq a$.
May assume: $E=\mathbb{R}^{n}$ (otherwise replace f_{j}, f by functions $f_{j} \chi_{E}, f \chi_{E}\left(\right.$ note: $\left.f_{j} \chi_{E} \nearrow f \chi_{E}\right)$). Let $0<b<1, \varphi \in Y, \varphi \leq f$. Denote

$$
\begin{gathered}
E_{j}=\left\{x \in \mathbb{R}^{n}: f_{j}(x) \geq b \varphi(x)\right\}=\left\{x \in \mathbb{R}^{n}:(f-b \varphi)(x) \geq 0\right\} \quad \text { (measurable set). } \\
f_{j}(x) \leq f_{j+1}(x) \forall x, \forall j \Rightarrow E_{j} \subset E_{j+1} \forall j .
\end{gathered}
$$

Claim: $\mathbb{R}^{n}=\bigcup_{j=1}^{\infty} E_{j}$.
Let $x \in \mathbb{R}^{n}$ be arbitrary.

$$
\text { If } \varphi(x)=0, \text { then } x \in E_{1}
$$

$$
\begin{aligned}
& \text { If } \varphi(x)>0 \text { then } b \varphi(x)<\varphi(x) \leq f(x) \quad(\text { because } 0<b<1 \text { and } \varphi(x)<\infty) . \\
& \Rightarrow \exists j \text { s.t. } b \varphi(x) \leq f_{j}(x) \Rightarrow x \in E_{j} . \\
& \text { Hence } \mathbb{R}^{n}=\bigcup_{j=1}^{\infty} E_{j}
\end{aligned}
$$

$$
\begin{gathered}
f_{j} \geq f_{j} \chi_{E_{j}} \geq b \varphi \chi_{E_{j}} \\
\Rightarrow \int_{\mathbb{R}^{n}} f_{j} \geq \int_{\mathbb{R}^{n}} b \varphi \chi_{E_{j}}=b I\left(\varphi, E_{j}\right) \xrightarrow{3.4} b I(\varphi, \underbrace{\bigcup_{j=1}^{\infty} E_{j}}_{=\mathbb{R}^{n}})=b I(\varphi), \text { as } j \rightarrow \infty \\
\Rightarrow a=\lim _{j \rightarrow \infty} \int_{E} f_{j} \geq b I(\varphi) \quad \forall \varphi \in Y, \varphi \leq f \\
\stackrel{\text { sup }}{\Longrightarrow} a \geq b \int_{\mathbb{R}^{n}} f \quad \forall 0<b<1 \\
\stackrel{b \rightarrow 1-}{\Longrightarrow} a \geq \int_{\mathbb{R}^{n}} f
\end{gathered}
$$

Remark. The order of \int and lim can not be changed in general: Example:

$$
\begin{gathered}
f_{j}=j \chi_{(0,1 / j]}, \quad f_{j} \in Y, \quad I\left(f_{j}\right)=j \frac{1}{j}=1 \quad \forall j \\
f_{j}(x) \xrightarrow{j \rightarrow \infty} 0 \quad \forall x \in \mathbb{R} \\
\Rightarrow \int_{\mathbb{R}} \lim _{j \rightarrow \infty} f_{j}=0 \neq 1=\lim _{j \rightarrow \infty} \int_{\mathbb{R}} f_{j} \quad \text { (the sequence }\left(f_{j}\right) \text { is not increasing). }
\end{gathered}
$$

Example. Find the limit

$$
\lim _{x \rightarrow 0+} \int_{0}^{\infty} \frac{e^{-x t}}{1+t^{2}} d t
$$

Solution: It's enough to study the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{e^{-x_{n} t}}{1+t^{2}} d t
$$

for all sequences $\left(x_{n}\right)$ s.t. $x_{n} \geq x_{n+1}>0$ and $x_{n} \searrow 0$. Denote

$$
\begin{gathered}
f_{n}(t)=\frac{e^{-x_{n} t}}{1+t^{2}}, \quad t \in[0, \infty) \text { and } n=1,2, \ldots \\
x_{n} \geq x_{n+1}>0 \text { and } t \in[0, \infty) \Rightarrow e^{-x_{n} t} \leq e^{-x_{n+1} t} \\
\Rightarrow 0 \leq f_{n}(t)=\frac{e^{-x_{n} t}}{1+t^{2}} \leq \frac{e^{-x_{n+1} t}}{1+t^{2}}=f_{n+1}(t)
\end{gathered}
$$

that is, the sequence $\left(f_{n}\right)$ is increasing. Furthermore,

$$
f_{n}(t)=\frac{e^{-x_{n} t}}{1+t^{2}} \xrightarrow{n \rightarrow \infty} \frac{e^{0 \cdot t}}{1+t^{2}}=\frac{1}{1+t^{2}} \quad \forall t \in[0, \infty)
$$

$\mathrm{MCT} \Rightarrow$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(t) d t=\int_{0}^{\infty} \lim _{n \rightarrow \infty} f_{n}(t) d t=\int_{0}^{\infty} \frac{1}{1+t^{2}} d t \stackrel{(*)}{=} \lim _{j \rightarrow \infty} \int_{0}^{j} \frac{1}{1+t^{2}} d t \\
\stackrel{3.13}{=} \lim _{j \rightarrow \infty} /{ }_{0}^{j} \arctan t=\lim _{j \rightarrow \infty}(\arctan j-\arctan 0)=\pi / 2
\end{gathered}
$$

Reason for $(*)$: MCT applied to the increasing sequence $\left(g_{j}\right)$,

$$
g_{j}(t)=\frac{\chi_{[0, j]}(t)}{1+t^{2}}
$$

(Note: In Theorem 3.13 the set E is bounded.)
Theorem 3.18. Let $E \subset \mathbb{R}^{n}$ be measurable and $f_{1}, \ldots, f_{k}: E \rightarrow \dot{\mathbb{R}}$ measurable s.t. $f_{j} \geq 0$. Then

$$
\int_{E} \sum_{j=1}^{k} f_{k}=\sum_{j=1}^{k} \int_{E} f_{k}
$$

Proof. We may assume: $E=\mathbb{R}^{n}$ and $k=2$. Theorem $3.9 \Rightarrow \exists$ increasing sequences $\left(\varphi_{j}\right),\left(\psi_{j}\right)$ of simple functions s.t.

$$
\left.\begin{array}{c}
\varphi_{j} \nearrow f_{1} \quad \text { and } \psi_{j} \nearrow f_{2} \quad \text { as } j \rightarrow \infty \\
3.5 \Rightarrow I\left(\varphi_{j}+\psi_{j}\right)=I\left(\varphi_{j}\right)+I\left(\psi_{j}\right) \\
\text { MCT } \Rightarrow I\left(\varphi_{j}\right)=\int \varphi_{j} \rightarrow \int f_{1} \text { and } I\left(\psi_{j}\right) \rightarrow \int f_{2}, \\
\text { similarly, } \varphi_{j}+\psi_{j} \nearrow f_{1}+f_{2} \text { and MCT } \Rightarrow \\
I\left(\varphi_{j}+\psi_{j}\right) \rightarrow \int\left(f_{1}+f_{2}\right)
\end{array}\right\} \Rightarrow \int\left(f_{1}+f_{2}\right)=\int f_{1}+\int f_{2} .
$$

Beppo Levi Theorem.

Theorem 3.19. Let $E \subset \mathbb{R}^{n}$ be measurable and $f_{j}: E \rightarrow \dot{\mathbb{R}}$ measurable s.t. $f_{j} \geq 0$. Then

$$
\int_{E}\left(\sum_{j \in \mathbb{N}} f_{j}\right)=\sum_{j \in \mathbb{N}} \int_{E} f_{j}
$$

Proof. Denote $u_{k}=\sum_{j=1}^{k} f_{j}$. Then

$$
0 \leq u_{1} \leq u_{2} \leq \cdots \quad \text { and } \quad u_{k} \rightarrow \sum_{j=1}^{\infty} f_{j}=: u
$$

MCT and Thm. $3.18 \Rightarrow$

$$
\int_{E} u=\int_{E} \lim _{k \rightarrow \infty} u_{k} \stackrel{\mathrm{MCT}}{=} \lim _{k \rightarrow \infty} \int_{E} u_{k} \stackrel{3.18}{=} \lim _{k \rightarrow \infty} \sum_{j=1}^{k} \int_{E} f_{j}=\sum_{j=1}^{\infty} \int_{E} f_{j} .
$$

The next convergence result is also very important!
Theorem 3.20. (Fatou's lemma). Let $E \subset \mathbb{R}^{n}$ be measurable and $f_{j}: E \rightarrow \dot{\mathbb{R}}$ measurable s.t. $f_{j} \geq 0 \forall j \in \mathbb{N}$. Then

$$
\int_{E} \liminf _{j \rightarrow \infty} f_{j} \leq \liminf _{j \rightarrow \infty} \int_{E} f_{j} \quad(+\infty \text { allowed })
$$

Proof. Denote

$$
g_{k}(x)=\inf _{j \geq k} f_{j}(x), \quad x \in E .
$$

Then

$$
\begin{gathered}
0 \leq g_{k} \leq g_{k+1} \forall k \in \mathbb{N} \\
g_{k} \text { measurable (Thm. 2.14) } \\
g_{k} \leq f_{k} \text { and } \lim _{k \rightarrow \infty} g_{k}=\liminf _{j \rightarrow \infty} f_{j} \\
\mathrm{MCT} \Rightarrow \int_{E} \liminf _{j \rightarrow \infty} f_{j}=\int_{E} \lim _{k \rightarrow \infty} g_{k} \stackrel{\mathrm{MCT}}{=} \lim _{k \rightarrow \infty} \int_{E} g_{k}=\liminf _{k \rightarrow \infty} \int_{E} g_{k} \underset{g_{k} \leq f_{k}}{\leq} \liminf _{k \rightarrow \infty} \int_{E} f_{k} .
\end{gathered}
$$

Example. (1)

$$
\begin{gathered}
f_{j}=j \chi_{(0,1 / j]} \\
\lim _{j \rightarrow \infty} f_{j}(x)=0 \forall x \in \mathbb{R} \Rightarrow \liminf _{j \rightarrow \infty} f_{j}=0 \\
\int_{\mathbb{R}} f_{j}=1 \forall j
\end{gathered}
$$

Fatou's lemma holds in the form $0 \leq 1$.
(2)

$$
\begin{gathered}
f_{j}=\chi_{[j, 2 j]} \\
\lim _{j \rightarrow \infty} f_{j}(x)=0 \forall x \in \mathbb{R} \Rightarrow \liminf _{j \rightarrow \infty} f_{j}=0 \\
\int_{\mathbb{R}} f_{j}=m([j, 2 j])=j \rightarrow \infty \text { as } j \rightarrow \infty
\end{gathered}
$$

Fatou's lemma holds in the form $0 \leq \infty$.
Integral as a set function is a measure:
Theorem 3.21. Let $f: \mathbb{R}^{n} \rightarrow \dot{\mathbb{R}}$ be measurable, $f \geq 0$. Then the mapping

$$
\text { Leb } \mathbb{R}^{n} \rightarrow[0,+\infty], \quad E \mapsto \int_{E} f
$$

is a measure, i.e.
(i)

$$
\int_{\emptyset} f=0,
$$

(ii) if $E_{j} \subset \mathbb{R}^{n}$ are measurable and disjoint, then

$$
\int_{\bigcup_{j=1}^{\infty} E_{j}} f=\sum_{j=1}^{\infty} \int_{E_{j}} f .
$$

In particular,
(iii) $E_{1} \subset E_{2} \subset \cdots \subset \mathbb{R}^{n}$ measurable \Rightarrow

$$
\int_{\bigcup_{j=1}^{\infty} E_{j}} f=\lim _{j \rightarrow \infty} \int_{E_{j}} f
$$

(iv) $\mathbb{R}^{n} \supset E_{1} \supset E_{2} \supset \cdots$ measurable and $\int_{E_{1}} f<\infty \Rightarrow$

$$
\int_{\bigcap_{j=1}^{\infty} E_{j}} f=\lim _{j \rightarrow \infty} \int_{E_{j}} f,
$$

Proof. (i): Thm. 3.12 (4); (ii): Exerc.; (iii) and (iv): Theorems on convergence of measures 1.32 and 1.33.

Theorem 3.22. (i) Let $f, g: E \rightarrow \mathbb{R}$ be measurable and $f \geq 0, g \geq 0$. If $f=g$ a.e. in E, then

$$
\int_{E} f=\int_{E} g .
$$

In particular: $f \geq 0$ measurable and defined a.e. in $E \Rightarrow \int_{E} f$ well-defined.
(ii) Let $f: E \rightarrow \dot{\mathbb{R}}$ be measurable, $f \geq 0$. If $\int_{E} f=0$, then $f=0$ a.e. in E.

Proof. (i): Denote $A=\{x \in E: f(x) \neq g(x)\}$. By assumption $m(A)=0$.

$$
\int_{E} f \stackrel{3.21}{=} \int_{f=g}^{E \backslash A} f+\underbrace{\int_{A} f}_{=0}=\int_{E \backslash A} g+\int_{A} g=\int_{E} g .
$$

(ii): Assume on the contrary that $m(\{x \in E: f(x)>0\})>0$. By Exercise, $\exists r>0$ s.t.

$$
\begin{gathered}
m(\underbrace{\{x \in E: f(x)>r\}}_{\text {denote }=A})>0 \\
\Rightarrow \int_{E} f \stackrel{(*)}{\geq} \int_{A} f \stackrel{(* *)}{\geq} r \int_{A} \chi_{A}=r m(A)>0 . \quad \text { contradiction } \\
{\left[(*): A \subset E, \quad(* *): f \chi_{A} \geq r \chi_{A}\right]}
\end{gathered}
$$

Remark: Let (X, Γ, μ) be a measure space, $f \Gamma$-measurable function $X \rightarrow[0, \infty]$. Define the integral of f

$$
\begin{aligned}
& \int_{X} f=\sup \{I(\varphi): \varphi: X \rightarrow \mathbb{R} \text { simple, } \varphi \leq f\} \\
& \int_{E} f=\int_{X} f \chi_{E} \quad \text { if } E \in \Gamma .
\end{aligned}
$$

The results in Section 3.8 (except Theorem 3.13 (Riemann int.)) hold.

3.23 Lebesgue integral: general case

Let $f: E \rightarrow \dot{\mathbb{R}}$ be measurable and $E \subset \mathbb{R}^{n}$. Denote

$$
\begin{aligned}
& f^{+}(x)=\max \{f(x), 0\} \quad\left(=\frac{1}{2}(|f|+f) \text { measurable }\right) \\
& f^{-}(x)=-\min \{f(x), 0\} \quad\left(=\frac{1}{2}(|f|-f) \text { measurable }\right) .
\end{aligned}
$$

Then

$$
\begin{gathered}
f^{+}(x) \geq 0, \quad f^{-}(x) \geq 0 \\
f(x)=f^{+}(x)-f^{-}(x), \quad|f(x)|=f^{+}(x)+f^{-}(x) .
\end{gathered}
$$

(Note: above the case $\infty-\infty$ does not occur because either $f^{+}(x)=0$ or $f^{-}(x)=0$.)
Section $3.8 \Rightarrow$

$$
\int_{E} f^{+} \quad \text { and } \quad \int_{E} f^{-} \quad \text { defined }(\in[0,+\infty]) .
$$

Can we always define

$$
\int_{E} f=\int_{E} f^{+}-\int_{E} f^{-} \quad\left(\text { cf. } f=f^{+}-f^{-}\right) ?
$$

No(!) since now the (undefined) case $\infty-\infty$ may occur!
Definition. A function $f: E \rightarrow \dot{\mathbb{R}}$ is integrable in E if f is measurable and $\int_{E} f^{+}<\infty$ and $\int_{E} f^{-}<\infty$. Then the integral of f over \bar{E} is

$$
\int_{E} f=\int_{E} f^{+}-\int_{E} f^{-} \quad(\in \mathbb{R})
$$

Theorem 3.24. A function $f: E \rightarrow \dot{\mathbb{R}}$ is integrable in $E \quad \Longleftrightarrow \quad f$ measurable and

$$
\int_{E}|f|<\infty
$$

Then

$$
\left|\int_{E} f\right| \leq \int_{E}|f| .
$$

Proof. \square Measurability is included in the definition of integrability. Furthermore,

$$
|f|=\underbrace{f^{+}}_{\geq 0}+\underbrace{f^{-}}_{\geq 0} \stackrel{3.18}{\Longrightarrow} \int_{E}|f|=\underbrace{\int_{E} f^{+}}_{<\infty}+\underbrace{\int_{E} f^{-}}_{<\infty}<\infty
$$

\Leftarrow

$$
\left.\begin{array}{l}
0 \leq f^{+} \leq|f| \Rightarrow \int_{E} f^{+} \leq \int_{E}|f|<\infty \\
0 \leq f^{-} \leq|f| \Rightarrow \int_{E} f^{-} \leq \int_{E}|f|<\infty
\end{array}\right\} \quad \Rightarrow \quad f \text { integrable in } E
$$

Furthermore,

$$
\begin{aligned}
\left|\int_{E} f\right| & =\left|\int_{E} f^{+}-\int_{E} f^{-}\right| \leq|\underbrace{\int_{E} f^{+}}_{\geq 0}|+|\underbrace{\mid \int_{E} f^{-}}_{\geq 0}|=\int_{E} f^{+}+\int_{E} f^{-} \\
& \stackrel{3.18}{=} \int_{E}\left(f^{+}+f^{-}\right)=\int_{E}|f| .
\end{aligned}
$$

Remark. f integrable in $E \stackrel{3.16,3.24}{\Longrightarrow}|f(x)|<\infty$ a.e. $x \in E$.
Theorem 3.25. If $f: E \rightarrow \dot{\mathbb{R}}$ is measurable, $|f| \leq g$ and g integrable in E, then f is integrable in E.

Proof.

$$
\int_{E}|f| \leq \int_{E} g<\infty
$$

Remark. It suffices that $|f| \leq g$ a.e. in E, i.e.

$$
m(\underbrace{\{x \in E:|f(x)|>g(x)\}}_{=A})=0, \quad \text { then } \quad \int_{E}|f|=\underbrace{\int_{E \backslash A}|f|}_{<\infty}+\underbrace{\int_{A}|f|}_{=0}<\infty
$$

Theorem 3.26. If $f: E \rightarrow \mathbb{R}$ is measurable and Riemann integrable, then f is Lebesgue integrable in E and

$$
\int_{E} f=(\mathrm{R}) \int_{E} f
$$

Proof.

$$
f^{+}=\frac{1}{2}(|f|+f), \quad f^{-}=\frac{1}{2}(|f|-f) \quad \text { Riemann integrable }
$$

$\stackrel{3.13}{\Longrightarrow} f^{+}$ja f^{+}Leb. integrable and Riem./Leb.-integrals are same

$$
\Rightarrow \int_{E} f=\int_{E} f^{+}-\int_{E} f^{-}=(\mathrm{R}) \int_{E} f^{+}-(\mathrm{R}) \int_{E} f^{-}=(\mathrm{R}) \int_{E} f
$$

Theorem 3.27. Let $E \subset \mathbb{R}^{n}$ be measurable, $f, g: E \rightarrow \dot{\mathbb{R}}$ integrable in E and $\lambda \in \mathbb{R}$. Then
(i) $f+g$ integrable in E and $\int_{E}(f+g)=\int_{E} f+\int_{E} g$;
(ii) λf integrable in E and $\int_{E} \lambda f=\lambda \int_{E} f$;
(iii) $f \leq g \Rightarrow \int_{E} f \leq \int_{E} g$;
(iv) $m(E)=0 \Rightarrow \int_{E} f=0$;
(v) $f=g$ a.e. in $E \Rightarrow \int_{E} f=\int_{E} g$.

Remark. f, g integrable in $E \Rightarrow f(x), g(x) \in \mathbb{R}$ a.e. $x \in E \Rightarrow f+g$ defined a.e. in E.
Proof. (i): Let $h=f+g$. Then h defined a.e. and measurable

$$
|h| \leq|f|+|h| \Rightarrow \int_{E}|h| \leq \int_{E}|f|+\int_{E}|g|<\infty \Rightarrow h \text { integrable }
$$

In general, $h^{+} \neq f^{+}+g^{+}$, but a.e. in E :

$$
\begin{aligned}
h^{+}-h^{-}=h & =f+g=f^{+}-f^{-}+g^{+}-g^{-} \\
\Rightarrow h^{+}+f^{-}+g^{-} & =h^{-}+f^{+}+g^{+} \quad(\text { functions } \geq 0, \text { integrate both sides (Thm. 3.18)) } \\
\Rightarrow \int_{E} h^{+}+\int_{E} f^{-}+\int_{E} g^{-} & =\int_{E} h^{-}+\int_{E} f^{+}+\int_{E} g^{+} \quad(\text { integraalit }<\infty) \\
\Rightarrow \int_{E} h=\int_{E} h^{+}-\int_{E} h^{-} & =\int_{E} f^{+}-\int_{E} f^{-}+\int_{E} g^{+}-\int_{E} g^{-} \\
& =\int_{E} f+\int_{E} g
\end{aligned}
$$

(ii): (a) $\lambda \geq 0$

$$
\begin{aligned}
& (\lambda f)^{+}=\lambda f^{+} \quad \text { ja } \quad(\lambda f)^{-}=\lambda f^{-} \\
\Rightarrow & \int_{E}(\lambda f)^{+}=\lambda \int_{E} f^{+} \quad \text { ja } \quad \int_{E}(\lambda f)^{-}=\lambda \int_{E} f^{-} \\
\Rightarrow & \text { claim }
\end{aligned}
$$

(b) $\lambda<0$

$$
(\lambda f)^{+}=(-\lambda) f^{-} \quad \text { ja } \quad(\lambda f)^{-}=(-\lambda) f^{+}, \quad \text { and the claim follows as above }
$$

(iii): (i) and (ii) $\Rightarrow \quad g-f$ integrable and

$$
\int_{E} g=\int_{E} f+\int_{E} \underbrace{(g-f)}_{\geq 0} \geq \int_{E} f
$$

(iv): $m(E)=0 \Rightarrow \int_{E} f^{+}=0$ and $\int_{E} f^{-}=0 \Rightarrow \int_{E} f=0$
(v): $f=g$ a.e. in $E \Rightarrow f^{+}=g^{+}, f^{-}=g^{-}$a.e. in E

$$
\Rightarrow \int_{E} f^{+}=\int_{E} g^{+} \text {ja } \int_{E} f^{-}=\int_{E} g^{-} \Rightarrow \text { claim. }
$$

Convergence theorems

Theorem 3.28. (Dominated convergence theorem, DCT) Let $E \subset \mathbb{R}^{n}$ be measurable and $\left(f_{j}\right), j \in \mathbb{N}$, a sequence of measurable functions s.t.

$$
f(x)=\lim _{j \rightarrow \infty} f_{j}(x) \quad \text { a.e. } x \in E .
$$

If $\exists g: E \rightarrow \dot{\mathbb{R}}$ s.t. g is integrable in E and

$$
\left|f_{j}(x)\right| \leq g(x), \forall j \in \mathbb{N}, \text { and a.e. } x \in E,
$$

then f is integrable in E and

$$
\int_{E} f=\lim _{j \rightarrow \infty} \int_{E} f_{j} . \quad\left(\text { Note } \int_{E} f \in \mathbb{R}\right)
$$

Proof. By redefining f_{j}, f and g in a set of measure zero, we may assume

$$
\begin{aligned}
& f_{j}(x) \xrightarrow{j \rightarrow \infty} f(x) \quad \forall x \in E \quad \text { and } \\
& \left|f_{j}(x)\right| \leq g(x) \quad \forall x \in E \\
\Rightarrow & |f(x)| \leq|g(x)| \quad \forall x \in E .
\end{aligned}
$$

g integrable in E, Thm. 3.25) $\Rightarrow f$ integrable in E.

$$
\begin{aligned}
& g+f_{j} \geq 0 \quad \text { and } g+f_{j} \rightarrow g+f \stackrel{\text { Fatou }}{\Longrightarrow} \\
& \int_{E} g+\int_{E} f=\int_{E}(g+f) \stackrel{\text { Fatou }}{\leq} \liminf _{j \rightarrow \infty} \int_{E}\left(g+f_{j}\right)=\liminf _{j \rightarrow \infty}\left(\int_{E} g+\int_{E} f_{j}\right) \\
& =\int_{E} g+\liminf _{j \rightarrow \infty} \int_{E} f_{j} \\
& \Rightarrow \int_{E} f \leq \liminf _{j \rightarrow \infty} \int_{E} f_{j} \quad\left(\text { note } \int_{E} g<\infty\right) \\
& g-f_{j} \geq 0, \quad \text { therefore } \\
& \int_{E} g-\int_{E} f=\int_{E}(g-f) \stackrel{\text { Fatou }}{\leq} \liminf _{j \rightarrow \infty} \int_{E}\left(g-f_{j}\right)=\liminf _{j \rightarrow \infty}\left(\int_{E} g-\int_{E} f_{j}\right) \\
& =\int_{E} g-\limsup _{j \rightarrow \infty} \int_{E} f_{j} \\
& \Rightarrow \int_{E} f \geq \limsup _{j \rightarrow \infty} \int_{E} f_{j} .
\end{aligned}
$$

Hence

$$
\int_{E} f \leq \liminf _{j \rightarrow \infty} \int_{E} f_{j} \leq \limsup _{j \rightarrow \infty} \int_{E} f_{j} \leq \int_{E} f \Rightarrow \quad \text { claim }
$$

Example. Find the limit

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{-3 / 2} \sin \frac{x}{n} d x
$$

Let $f_{n}(x)=n x^{-3 / 2} \sin \frac{x}{n}=(\underbrace{(n / x) \sin (x / n)}_{\rightarrow 1 \text {, as } n \rightarrow \infty}) x^{-1 / 2} \xrightarrow{n \rightarrow \infty} x^{-1 / 2} \stackrel{\text { def. }}{=} f(x)$, then

$$
\int_{0}^{1} f=\int_{0}^{1} 2 \sqrt{x}=2
$$

$$
\begin{gathered}
|\sin t| \leq t \forall t \geq 0 \Rightarrow|(n / x) \sin (x / n)| \leq 1 \quad \forall n \in \mathbb{N}, \forall x \in(0,1] \\
\Rightarrow\left|f_{n}(x)\right| \leq x^{-1 / 2}=g(x)(=f(x)), g \text { integrable in }[0,1] \\
\text { DCT } \Rightarrow \int_{0}^{1} f_{n} \rightarrow \int_{0}^{1} f=2
\end{gathered}
$$

4 Fubini's theorems

Here we just present Fubini's theorems without proofs.
We identify $\mathbb{R}^{p+q}=\mathbb{R}^{p} \times \mathbb{R}^{q}, p, q \in \mathbb{N}$.

$$
z \in \mathbb{R}^{p+q} \Longleftrightarrow z=(\underbrace{x_{1}, \ldots, x_{p}}_{=x \in \mathbb{R}^{p}}, \underbrace{y_{1}, \ldots, x_{q}}_{=y \in \mathbb{R}^{q}})=(x, y)
$$

Theorem 4.1. (Fubini's 1. theorem, $f \geq 0)$ Let $f: \mathbb{R}^{p+q} \rightarrow \dot{\mathbb{R}}$ be measurable and $f \geq 0$. Then
(1)
$y \mapsto f(x, y)$ is measurable for a.e. $x \in \mathbb{R}^{p}$;
[i.e. $m_{p}\left(\left\{x \in \mathbb{R}^{p}: y \mapsto f(x, y)\right.\right.$ non-measurable $\left.\}\right)=0$]
(2)

$$
x \mapsto f(x, y) \text { is measurable for a.e. } y \in \mathbb{R}^{q}
$$

(3)

$$
x \mapsto \int_{\mathbb{R}^{q}} f(x, y) d m_{q}(y) \quad \text { is measurable }
$$

(4)

$$
y \mapsto \int_{\mathbb{R}^{p}} f(x, y) d m_{p}(x) \quad \text { measurable } ;
$$

(5)

$$
\begin{aligned}
\int_{\mathbb{R}^{p+q}} f & =\int_{\mathbb{R}^{p}}\left(\int_{\mathbb{R}^{q}} f(x, y) d m_{q}(y)\right) d m_{p}(x) \\
& =\int_{\mathbb{R}^{q}}\left(\int_{\mathbb{R}^{p}} f(x, y) d m_{p}(x)\right) d m_{q}(y) . \quad(+\infty \text { allowed })
\end{aligned}
$$

Theorem 4.2. (Fubini's 2. theorem, general case) Let $f: \mathbb{R}^{p+q} \rightarrow \dot{\mathbb{R}}$ be measurable and suppose that at least one of the integrals

$$
\begin{aligned}
& \int_{\mathbb{R}^{p+q}}|f|, \quad \int_{\mathbb{R}^{p}}\left(\int_{\mathbb{R}^{q}}|f(x, y)| d m_{q}(y)\right) d m_{p}(x), \quad \text { or } \\
& \int_{\mathbb{R}^{q}}\left(\int_{\mathbb{R}^{p}}|f(x, y)| d m_{p}(x)\right) d m_{q}(y)
\end{aligned}
$$

is finite. Then
(1) $y \mapsto f(x, y)$ is integrable over \mathbb{R}^{q} for a.e. $x \in \mathbb{R}^{p}$;
(2) $x \mapsto f(x, y)$ is integrable over \mathbb{R}^{p} for a.e. $y \in \mathbb{R}^{q}$;
(3) $x \mapsto \int_{\mathbb{R}^{q}} f(x, y) d m_{q}(y)$ is integrable over \mathbb{R}^{p}, i.e.

$$
\int_{\mathbb{R}^{p}}\left|\int_{\mathbb{R}^{q}}\right| f(x, y)\left|d m_{q}(y)\right| d m_{p}(x)<\infty
$$

(4) $y \mapsto \int_{\mathbb{R}^{p}} f(x, y) d m_{p}(x)$ is integrable over \mathbb{R}^{q};
(5) f is integrable over \mathbb{R}^{p+q}, and

$$
\int_{\mathbb{R}^{p+q}} f=\int_{\mathbb{R}^{p}}\left(\int_{\mathbb{R}^{q}} f(x, y) d m_{q}(y)\right) d m_{p}(x)=\int_{\mathbb{R}^{q}}\left(\int_{\mathbb{R}^{p}} f(x, y) d m_{p}(x)\right) d m_{q}(y)
$$

Below is a list of (some) books that can be used as an additional material.

References

[EG] Evans, Lawrence ja Gariepy Ronald. Measure theory and fine properties of functions, CRC Press, 1992.
[Fr] Friedman, Avner. Foundations of modern analysis, Dover Publications Inc., 1982.
[GZ] Gariepy, Ronald ja Ziemer, William. Modern real analysis, PWS Publishing Company, 1994.
[HS] Hewitt, Edwin ja Stromberg, Karl. Real and abstract analysis, Springer-Verlag, 1975.
[Jo] Jones, Frank. Lebesgue integration on Euclidean space, Jones and Bartlett Publishers, 1993.
[Mat] Mattila, Pertti. Geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995.
[MW] McDonald, John N. ja Weiss, Neil A. A course in real analysis, Academic Press Inc., 1999.
[Ro] Royden, H. L. Real analysis, Macmillan Publishing Company, 1988.
[Ru] Rudin, Walter. Real and complex analysis, McGraw-Hill Book Co., 1987.

