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1. Fourier series, real formulation

Assume that the function f : R → R is 2π-periodic (in other words,
satisfies f(x) = f(x + ν2π) for any ν ∈ Z) and can be written in the
form

(1) f(x) = a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where a0, a1, a2, . . . and b1, b2, . . . are real-valued coefficients.
Computationally it is very useful to consider approximations of func-

tions and signals by truncated Fourier series

(2) f(x) ≈ a0 +
N∑
n=1

(an cos(nx) + bn sin(nx)) .

Then the practical question is: given f , how to determine the coeffi-
cients a0, a1, a2, . . . , aN and b1, b2, . . . , bN? Let us derive formulas for
them.

The constant coefficient a0 is found as follows. Integrate both sides
of (1) from 0 to 2π:∫ 2π

0

f(x)dx = a0

∫ 2π

0

dx+

+
∞∑
n=1

an

∫ 2π

0

cos(nx)dx+

+
∞∑
n=1

bn

∫ 2π

0

sin(nx)dx,(3)

where we assumed that the orders of infinite summing and integration
can be interchanged. Now it is easy to check that

∫ 2π

0
cos(nx)dx = 0

and
∫ 2π

0
sin(nx)dx = 0 and

∫ 2π

0
dx = 2π. Therefore,

(4) a0 =
1

2π

∫ 2π

0

f(x)dx,
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which can be interpreted as the average value of the function f over
the interval [0, 2π].

Further, fix any integer m ≥ 1 and multiply both sides of (1) by
cos(mx). Integration from 0 to 2π gives∫ 2π

0

f(x) cos(mx)dx = a0

∫ 2π

0

cos(mx)dx+

+
∞∑
n=1

an

∫ 2π

0

cos(nx) cos(mx)dx+

+
∞∑
n=1

bn

∫ 2π

0

sin(nx) cos(mx)dx.(5)

We already know that
∫ 2π

0
cos(mx)dx = 0, so the term containing a0

in the right hand side of (5) vanishes. Clever use of trigonometric
identities allows one to see that

(6)

∫ 2π

0

sin(nx) cos(mx)dx = 0 for all n ≥ 1,

and that

(7)

∫ 2π

0

cos(nx) cos(mx)dx = 0 for all n ≥ 1 with n 6= m.

The checking of (6) and (7) is left as an exercise. So actually the only
nonzero term in the right hand side of (5) is the one containing the
coefficient am. Another exercise is to verify this identity:

(8)

∫ 2π

0

cos(nx) cos(nx)dx = π.

Therefore, substituting (8) into (5) gives

(9) an =
1

π

∫ 2π

0

f(x) cos(nx)dx.

A similar derivation shows that

(10) bn =
1

π

∫ 2π

0

f(x) sin(nx)dx.

One might be tempted to ask: what kind of functions allow a rep-
resentation of the form (1)? Or: in what sense does the right-hand
sum converge in (2) as N → ∞? Also: under what assumptions can
the order of infinite summing and integration can be interchanged in
the derivations of (3) and (5)? These are deep and interesting math-
ematical questions which will not be further discussed in this short
note.
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2. Fourier series, complex formulation

Parametrize the boundary of the unit circle as

{(cos θ, sin θ) | 0 ≤ θ < 2π}.

We will use the Fourier basis functions

(11) ϕn(θ) = (2π)−1/2einθ, n ∈ Z.

We can approximate 2π-periodic functions f : R → R following the
lead of the great applied mathematician Joseph Fourier (1768–1830).
Define cosine series coefficients using the L2 inner product

f̂n := 〈f, ϕn〉 =

∫ 2π

0

f(θ)ϕn(θ) dθ, n ∈ Z.

Then, for nice enough functions f , we have

f(θ) ≈
N∑

n=−N

f̂n ϕn(θ)

with the approximation getting better when N grows.
Note that the functions ϕn are orthogonal:

〈ϕn, ϕn〉 = δnm.

3. Haar wavelets

For a wonderful introduction to wavelets, please see the classic book
Ten lectures on wavelets by Ingrid Daubechies [1].

3.1. Theoretical approach as orthonormal basis of L2([0, 1]).
Consider real-valued functions defined on the interval [0, 1]. There are
two especially important functions, namely the scaling function ϕ(x)
and the mother wavelet ψ(x) related to the Haar wavelet basis, defined
as follows:

ϕ(x) ≡ 1, ψ(x) =

{
1, for 0 ≤ x < 1/2,
−1 for 1/2 ≤ x ≤ 1.

Also, let us define wavelets as scaled and translated versions of the
mother wavelet:

ψjk := 2j/2ψ(2jx− k) for j ≤ 0 and 0 ≤ k ≤ 2j − 1.

Let f, g : [0, 1]→ R. Define the inner product between f and g by

(12) 〈f, g〉 :=

∫ 1

0

f(x)g(x) dx.

https://en.wikipedia.org/wiki/Ingrid_Daubechies
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(Note that the complex conjugate over g in (12) is not relevant here as
g is real-valued. We just have it there for mathematical completeness.)
Please convince yourself about the fact that wavelets are orthogonal:

〈ψjk, ψj′k′〉 =

{
1 if j = j′ and k = k′,
0 otherwise.

(Start by understanding why 〈ψ, ϕ〉 = 0 and 〈ψ, ψ〉 = 1, then look
at smaller scales corresponding to j > 0. Basically it is the same
phenomenon always.)

3.2. Computational implementation of Haar wavelet transform.
Consider a signal f ∈ Rn, where n = 2n0 with some n0 > 1. Think of
f as a collection of point values of a function f : [0, 1] → R evaluated
at an equispaced grid. For simplicity, let us explain the whole process
first for f ∈ R4 and then in general.

3.2.1. One-step non-normalized Haar transform. Consider two convo-
lution operations on f ∈ R4. The low-pass filter involves convolution
with the filter g0 = [1 1]T ∈ R2, and the detail filter convolves with
d0 = [1 − 1]T ∈ R2. Then

g0 ∗ f =


f1 + f2
f2 + f3
f3 + f4
f4 + 0

 , d0 ∗ f =


f2 − f1
f3 − f2
f4 − f3
0− f4

 ,
where we used zero boundary conditions for the convolution.

The next step is to apply a downsampling operation. Denote by
DS2 the operator that picks out every other component of a vector:
DS2([f1 f2 f3 f4]) = [f1 f3]. Then

DS2(g0 ∗ f) =

[
f1 + f2
f3 + f4

]
, DS2(d0 ∗ f) =

[
f2 − f1
f4 − f3

]
.

Now we can define the non-normalized Haar transform of f ∈ R4:

(13) Haar0(f) :=

[
DS2(g0 ∗ f)
DS2(d0 ∗ f)

]
=


f1 + f2
f3 + f4
f2 − f1
f4 − f3

 ∈ R4.

3.2.2. One-step non-normalized inverse Haar transform. Given a vec-
tor h = [h1 h2 h3 h4], the inverse one-step Haar transform starts by
picking out the two halves of the vector: h(1) = [h1 h2] and h(2) =
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[h3 h4]. Now apply an upsampling operation US2 that lengthens the
two halves by substituting zero elements:

US2(h
(1)) =


0
h1

0
h2

 , US2(h
(2)) =


0
h3

0
h4

 .
Next we use convolution filters g̃0 and d̃0 defined by reversing the above

filters g0 and d0. We get g̃0 = [1 1]T and d̃0 = [−1 1]T , resulting in

g̃0 ∗ US2(h
(1)) = g̃0 ∗


0
h1

0
h2

 =


h1

h1

h2

h2


and

d̃0 ∗ US2(h
(2)) = d̃0 ∗


0
h3

0
h4

 =


−h3

h3

−h4

h4

 .
Now we define

(14) Haar−10 (h) := g̃0 ∗ US2(h
(1)) + d̃0 ∗ US2(h

(2)) =


h1 − h3

h1 + h3

h2 − h4

h2 + h4

 .
3.2.3. Normalization. It would be great if Haar−10 would be the inverse
operator of Haar0. However, this is what we get from combining (13)
and (14):

Haar−10

(
Haar0(f)

)
= Haar−10

(
f1 + f2
f3 + f4
f2 − f1
f4 − f3

)

=


f1 + f2 − (f2 − f1)
f1 + f2 + f2 − f1
f3 + f4 − (f4 − f3)
f3 + f4 + f4 − f3



=


2f1
2f2
2f3
2f4

 .
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So we have, unfortunately, Haar−10

(
Haar0(f)

)
= 2f instead of just f as

desired.
However, this is easy to fix. Set

g =
1√
2

[
1
1

]
, d =

1√
2

[
1
−1

]
, g̃ =

1√
2

[
1
1

]
, d̃ =

1√
2

[
−1

1

]
,

and define

(15) Haar(f) :=

[
DS2(g ∗ f)
DS2(d ∗ f)

]
,

and

(16) Haar−1(h) := g̃ ∗ US2(h
(1)) + d̃ ∗ US2(h

(2)).

Then it is straightforward to check that Haar−1
(
Haar(f)

)
= f .

3.2.4. Multi-step Haar transform. The idea is to apply the Haar trans-
form recursively to the low-pass filtered part of the signal at each step
of the process.

f ∈ R2n0
�
���

@
@@R

DS2(g0 ∗ f)

DS2(d0 ∗ f) ∈ R2n0−1

��
��*

HHHHj

DS2(g0 ∗DS2(g0 ∗ f))

DS2(d0 ∗DS2(g0 ∗ f)) ∈ R2n0−2

��
���1
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