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Theoretical exercises:

T1. Let us study the problem of finding the vector f0 ∈ Rn that gives the minimum
value for the function Q : Rn → R defined by

Q(f) = ‖Af −m‖22,

where A is a k×n matrix and m ∈ Rk. Assume that k ≥ n and that all
singular values of A are strictly positive.

(a) Show that Q is continuously differentiable with respect to any fj and
compute the gradient ∇Q(f).

(b) Prove that ATA is invertible. (Hint: this was done in the lecture.)

(c) Set ∇Q = 0 and deduce that the minimizer f0 is unique and satisfies
f0 = (ATA)−1ATm.

T2. Let a > 0. Assume that the Point Spread Function ψ : R → R is infinitely
smooth and satisfies ψ(x) = 0 for all |x| ≥ a. Further, assume ψ(x) ≥ 0 for
all x ∈ R and that

∫ a
−a ψ(x) dx = 1.

Define the Edge Spread Function (ESF) by the formula

ϕ(x) =

∫ ∞
−∞

ψ(y)H(x− y) dy,

where the Heaviside function H is defined by

H(x) =

{
0 for x ≤ 0,
1 for x ≥ 0.

Show that

ϕ′(x) =
dϕ

dx
(x) = ψ(x).



Matlab exercises:

M1. Stacked-form generalized Tikhonov regularization for the 1D decon-
volution problem. Follow the procedure of Problem M2 of Exercise 2. Take
a suitable k = 128 and simulate discrete convolution data m̃ (with a little
noise added) using the simulated continuum model. Furthermore, take n = k
and let A be the square-shaped measurement matrix from the computational
model.

Let us define two discrete differentiation matrices:

L =
1

∆x



−1 1 0 0 0 · · · 0
0 −1 1 0 0 · · · 0
0 0 −1 1 0 · · · 0
...

. . .
...

. . .

0 · · · 0 −1 1 0
0 · · · 0 0 −1 1


, (1)

and

L0 =
1

∆x



1 0 0 0 0 · · · 0
−1 1 0 0 0 · · · 0

0 −1 1 0 0 · · · 0
0 0 −1 1 0 · · · 0
...

. . .
...

. . .

0 · · · 0 −1 1 0
0 · · · 0 0 −1 1
0 · · · 0 0 0 −1


. (2)

Note that the size of L is (n− 1)×n, while the size of L′ is (n+ 1)×n.

(a) Consider the matrix equation A′f = m̃′, where

A′ =

[
A√
αL

]
, m̃′ =

[
m̃
0

]
, (3)

and I denotes the n×n identity matrix and 0 is a vertical vector with all
components equal to zero. Compute reconstruction as

fα = A′ \ m̃′. (4)

Let the regularization parameter α > 0 range over many values. For each
α, calculate the relative square norm error between the reconstruction
and the Heaviside function. Which value of α gives the smallest error?
What seems to be the limit of the reconstruction as α→∞?

(b) Repeat (a) using L0 instead of L. What seems to be the limit of the
reconstruction as α→∞?



M2. From ESF to PSF. This is a computational version of problem T2 above.
Consider the 1D convolution data we collected in the lecture using a camera.
As we noticed, the theoretical PSF given by file PSF.m is not so accurate. So
let us compute an empirical PSF.

(a) Take the low-noise ESF denoted by m0 in the file deco03 data meas.m.
Use the Matlab command diff to differentiate the ESF and so to give
the PSF. Normalize the PSF and compare the output of the computa-
tional model to the measured data. Is the approximation better with the
empirical PSF than with the theoretical PSF?

(b) Is the PSF from (a) symmetric? Probably not. Make it symmetric by
a command of type psf = (psf + fliplr(psf))/2 or psf = (psf +

flipud(psf))/2. Do you get a better fit of the computational model to
the measured data?

(c) Compute the PSF from the medium-noisy ESF (called mn in the Matlab
routine) by regularized numerical differentiation. You can use a matrix
of the form

A =


1
k

0 0 0 . . . 0
1
k

1
k

0 0 . . . 0
1
k

1
k

1
k

0 . . . 0
...

...
...

...
. . .

...
1
k

1
k

1
k

1
k

. . . 1
k

 (5)

and apply truncated SVD. Do you get a PSF close to the one you got in
(a)? How about the high-noise ESF?

M3. Use the empirical PSF from Problem M2 and reconstruct the Heaviside func-
tion from the three real-data options m0, mn and mn2. Use Tikhonov regu-
larization and the stacked form computation. Is the result better with the
difference matrix L or with the identity matrix?


